Edexcel AS Maths Exponentials \& logarithms

Topic assessment

1. Write as a single logarithm:
(i) $2 \log a+3 \log b$
(ii) $\log x-3 \log y+4 \log z$
2. Express the following in terms of $\log p, \log q$ and $\log r$.
(i) $\log \frac{p q}{r}$
(ii) $\log \frac{\sqrt{p}}{r^{2}}$
3. Solve the following equations;
(i) $2^{x}=7$
(ii) $3^{2 x}=5$
4. Solve the equations
(i) $2 \mathrm{e}^{x}=3 \mathrm{e}^{-x}+5$
(ii) $\ln (2 x+1)=\ln x+2$
giving your answers in exact form.
5. Alice puts $£ 500$ in a savings account, at a fixed interest rate of 5% per year, when her grandson Harry is born. Interest is added to the account on Harry's birthday each year. The amount, P, in the account after n years is given by:

$$
P=500 \times 1.05^{n}
$$

How old will Harry be when the amount in the savings account first exceeds £1000?
6. The number N of rabbits in a colony after t years is modelled by $N=20 \times 2^{0.8 t}$.
(i) How many rabbits are in the colony after 5 years?
(ii) A biologist suggests that due to limited resources, this model will no longer be appropriate when N reaches 2000. For how many years will this model be appropriate?
7. The temperature $T^{\circ} \mathrm{C}$ of the water in a kettle t minutes after boiling is modelled by the equation $T=20+80 \mathrm{e}^{-0.5 t}$.
(i) What is the initial temperature of the water?
(ii) Find the temperature of the water after 5 minutes.
(iii) Find the time at which the temperature of the water is $30^{\circ} \mathrm{C}$.
(iv) Find the initial rate of cooling, and the rate of cooling after 2 minutes.
(v) What will be the long-term temperature of the water?
8. In an experiment, the number of bacteria, N, in a culture was estimated at time t days after the measurements started.
The results were as follows:

t	1	2	3	4	5	6
N	120	170	250	400	620	910

Edexcel AS Maths Exp \& logs Assessment solns

It is believed that the relationship between N and t can be expressed in the form

$$
N=a b^{t}
$$

where a and b are constants.
(i) Explain how this can be tested by plotting $\log N$ against t.
(ii) Make out a table of values of $\log N$ and draw the graph.
(iii) Use your graph to estimate the values of a and b.
(iv) Estimate the number of bacteria present after 20 days. State, with a reason, whether your estimate is likely to be a good one.
9. It is believed that two quantities, x and y, are connected by a relationship of the form $y=k x^{n}$, where k and n are constants.

In an experiment, the following data were produced.

x	5	10	15	20	25	30	35
y	9	24	48	69	102	131	166

(i) Explain how the form of the relationship can be tested by plotting log y against $\log x$.
(ii) Make out a table of values of $\log x$ and $\log y$ and plot the graph. [3]
(iii) Use your graph to estimate the values of k and n.

Edexcel AS Maths Exp \& logs Assessment solns

Solutions to topic assessment

1. (i) $2 \log a+3 \log b=\log a^{2}+\log b^{3}$

$$
=\log \left(a^{2} b^{3}\right)
$$

(ii) $\log x-3 \log y+4 \log z=\log x-\log y^{3}+\log z^{4}$

$$
=\log \frac{x z^{4}}{y^{3}}
$$

2. (i) $\log \frac{p q}{r}=\log p+\log q-\log r$
(ii) $\log \frac{\sqrt{P}}{r^{2}}=\log p^{\frac{1}{2}}-\log r^{2}$

$$
=\frac{1}{2} \log p-2 \log r
$$

3. (i) $2^{x}=7$

$$
\log 2^{x}=\log 7
$$

$$
x \log 2=\log 7
$$

$$
x=\frac{\log 7}{\log 2}=2.81 \text { (3 s.f.) }
$$

(ii) $3^{2 x}=5$
$\log 3^{2 x}=\log 5$
$2 \times \log 3=\log 5$
$x=\frac{\log 5}{2 \log 3}=0.732$ (3 s.f.)
4. (i) $2 e^{x}=3 e^{-x}+5$
substituting $y=e^{x}: \quad 2 y=3 y^{-1}+5$
Multiplying through by $y: 2 y^{2}=3+5 y$

$$
2 y^{2}-5 y-3=0
$$

$$
(2 y+1)(y-3)=0
$$

$$
y=-\frac{1}{2} \text { or } 3
$$

$$
e^{x}=-\frac{1}{2} \text { or } 3
$$

Since e^{x} cannot be negative, $e^{x}=3 \Rightarrow x=\ln 3$

Edexcel AS Maths Exp \& logs Assessment solns

(ii) $\ln (2 x+1)=\ln x+2$

$$
\ln (2 x+1)-\ln x=2
$$

$$
\ln \left(\frac{2 x+1}{x}\right)=2
$$

$$
\frac{2 x+1}{x}=e^{2}
$$

$$
2 x+1=x e^{2}
$$

$$
1=x e^{2}-2 x
$$

$$
1=x\left(e^{2}-2\right)
$$

$$
x=\frac{1}{e^{2}-2}
$$

5. $500 \times 1.05^{n}>1000$
$1.05^{n}>2$
$n \log 1.05>\log 2$
$n>14.2$
He will be 15 years old when the amount first exceeds $£ 1000$.
6. (i) $N=20 \times 2^{0.8 t}$

Whent $=5, N=20 \times 2^{4}=320$.
(ii) $20 \times 2^{0.8 t}=2000$
$2^{0.8 t}=100$
$\ln 2^{0.8 t}=\ln 100$
$0.8 t \ln 2=\ln 100$
$t=8.30$
After 8.3 years.
7. (i) When $t=0, T=100$, so the initial temperature is $100^{\circ} \mathrm{C}$
(ii) $T=20+80 e^{-0.5 t}$

Whent $=5, T=20+80 e^{-2.5}=26.6$
The temperature after 5 minutes is 26.6°.

Edexcel AS Maths Exp \& logs Assessment solns

(ií) $30=20+80 e^{-0.5 t}$
$80 e^{-0.5 t}=10$
$e^{-0.5 t}=\frac{1}{8}$
$-0.5 t=\ln \frac{1}{8}$
$t=4.16$
After 4.16 minutes.
(iv) $\frac{d T}{d t}=80 \times-0.5 e^{-0.5 t}=-40 e^{-0.5 t}$

Whent $=0, \frac{d T}{d t}=-40 e^{0}=-40$
The initial rate of cooling is 40 degrees / minute.
When $t=2, \frac{d T}{d t}=-40 e^{-1}=-14.7$ degrees $/$ minute.
The rate of cooling after 2 minutes is 14.7 degrees / minute.
(v) $20^{\circ} \mathrm{C}$
8. (i) $N=a b^{t}$

$$
\begin{aligned}
\log N & =\log \left(a b^{t}\right) \\
& =\log a+\log b^{t} \\
& =\log a+t \log b
\end{aligned}
$$

This is the equation of a straight line graph with variables t and $\log N$, so if the relationship is an appropriate model, then plotting log N against t should give an approximate straight line graph.
(ii)

t	1	2	3	4	5	6
N	120	170	250	400	620	910
$\log \mathrm{~N}$	2.08	2.23	2.40	2.60	2.79	2.96

Edexcel AS Maths Exp \& logs Assessment solns

(iii) Equation of graph is $\log N=\log a+t \log b$

Gradient $=\frac{0.72}{4}=0.18$, so $\log b=0.18 \Rightarrow b=10^{0.18} \approx 1.5$
intercept $=1.88$, so $\log a=1.88 \Rightarrow a=10^{1.88}=76$
(iv) $N=76 \times 1.5^{t}$

After 20 days, $M=76 \times 1.5^{20} \approx 250000$ If conditions remain the same the estimate is likely to be good, but it could be that the bacteria growth slows if the environment cannot support those numbers.
7. (i) $y=k x^{n}$

$$
\begin{aligned}
\log y & =\log \left(k x^{n}\right) \\
& =\log k+\log x^{n} \\
& =\log k+n \log x
\end{aligned}
$$

This is the equation of a straight line graph with variables $\log y$ and $\log x$, so if the model is an appropriate one then plotting log y against $\log x$ will give an approximate straight line graph.
(ii)

x	5	10	15	20	25	30	35
y	9	24	48	69	102	131	166
$\log x$	0.70	1	1.18	1.30	1.40	1.48	1.54
$\log y$	0.95	1.38	1.68	1.84	2.01	2.12	2.22

Edexcel AS Maths Exp \& logs Assessment solns

(iii) Equation of graph is $\log y=\log k+n \log x$

Gradient $=\frac{1.5}{1}$, so $n \approx 1.5$
intercept $=-0.12$, so $\log k=-0.12 \Rightarrow k=10^{-0.12} \approx 0.8$

