Edexcel AS Maths Exponentials & logarithms

1.	1. Write as a single logarithm:								
	(i) $2\log a + 3\log b$	(ii)	$\log x - 3\log y + 4\log z$	[4]					

2. Express the following in terms of log *p*, log *q* and log *r*.

(i)
$$\log \frac{pq}{r}$$
 (ii) $\log \frac{\sqrt{p}}{r^2}$ [4]

- 3. Solve the following equations; (i) $2^x = 7$ (ii) $3^{2x} = 5$ [4]
- 4. Solve the equations

(i)
$$2e^x = 3e^{-x} + 5$$
 [3]

(ii)
$$\ln(2x+1) = \ln x + 2$$
 [3]

giving your answers in exact form.

5. Alice puts £500 in a savings account, at a fixed interest rate of 5% per year, when her grandson Harry is born. Interest is added to the account on Harry's birthday each year. The amount, P, in the account after n years is given by:

$$P = 500 \times 1.05^{n}$$

How old will Harry be when the amount in the savings account first exceeds £1000? [4]

- 6. The number N of rabbits in a colony after t years is modelled by $N = 20 \times 2^{0.8t}$.
 - i) How many rabbits are in the colony after 5 years?
 - (ii) A biologist suggests that due to limited resources, this model will no longer be appropriate when N reaches 2000. For how many years will this model be appropriate? [3]
- 7. The temperature $T^{\circ}C$ of the water in a kettle *t* minutes after boiling is modelled by the equation $T = 20 + 80e^{-0.5t}$.
 - (i) What is the initial temperature of the water? [1]
 - (ii) Find the temperature of the water after 5 minutes. [2]
 - (iii) Find the time at which the temperature of the water is 30° C. [3]
 - (iv) Find the initial rate of cooling, and the rate of cooling after 2 minutes. [3]
 - (v) What will be the long-term temperature of the water? [1]
- 8. In an experiment, the number of bacteria, *N*, in a culture was estimated at time *t* days after the measurements started. The results were as follows:

t	1	2	3	4	5	6
N	120	170	250	400	620	910

It is believed that the relationship between N and t can be expressed in the form

$$N = ab^t$$

where *a* and *b* are constants.

- (i) Explain how this can be tested by plotting $\log N$ against t. [2]
- (ii) Make out a table of values of log *N* and draw the graph. [3]
- (iii) Use your graph to estimate the values of *a* and *b*.
- (iv) Estimate the number of bacteria present after 20 days. State, with a reason, whether your estimate is likely to be a good one. [2]
- 9. It is believed that two quantities, x and y, are connected by a relationship of the form $y = kx^n$, where k and n are constants.

In an experiment, the following data were produced.

x	5	10	15	20	25	30	35
у	9	24	48	69	102	131	166

- (i) Explain how the form of the relationship can be tested by plotting $\log x$ [2]
- (ii) Make out a table of values of log *x* and log *y* and plot the graph. [3]
- (iii) Use your graph to estimate the values of k and n. [3]

Total 55 marks

[3]

Solutions to topic assessment

1. (i)
$$2\log a + 3\log b = \log a^{2} + \log b^{3}$$

= $\log(a^{2}b^{3})$ [2]
(ii) $\log x - 3\log y + 4\log z = \log x - \log y^{3} + \log z^{4}$

$$\log x - 3\log y + 4\log z = \log x - \log y^3 + \log z^4$$
$$= \log \frac{xz^4}{y^3}$$
[2]

2. (i)
$$\log \frac{pq}{r} = \log p + \log q - \log r$$
 [2]
(ii) $\log \frac{\sqrt{p}}{r^2} = \log p^{\frac{1}{2}} - \log r^2$
 $= \frac{1}{2} \log p - 2 \log r$ [2]

3. (i)
$$2^{x} = 7$$

 $log 2^{x} = log 7$
 $x log 2 = log 7$
 $x = \frac{log 7}{log 2} = 2.81$ (3 s.f.)

(ii)
$$3^{2x} = 5$$

 $\log 3^{2x} = \log 5$
 $2x \log 3 = \log 5$
 $x = \frac{\log 5}{2\log 3} = 0.732$ (3 s.f.)
[2]

4. (i)
$$2e^{x} = 3e^{-x} + 5$$

Substituting $y = e^{x}$: $2y = 3y^{-1} + 5$
Multiplying through by y: $2y^{2} = 3 + 5y$
 $2y^{2} - 5y - 3 = 0$
 $(2y+1)(y-3) = 0$
 $y = -\frac{1}{2}$ or 3
 $e^{x} = -\frac{1}{2}$ or 3
Since e^{x} cannot be negative, $e^{x} = 3 \implies x = \ln 3$

[3]

- (ii) $\ln(2x+1) = \ln x + 2$ $\ln(2x+1) - \ln x = 2$ $\ln\left(\frac{2x+1}{x}\right) = 2$ $\frac{2x+1}{x} = e^{2}$ $2x+1 = xe^{2}$ $1 = xe^{2} - 2x$ $1 = x(e^{2} - 2)$ $x = \frac{1}{e^{2} - 2}$ [3]
- 5. 500×1.05" > 1000

 $1.05^{n} > 2$ $n \log 1.05 > \log 2$ n > 14.2He will be 15 years old when the amount first exceeds £1000. [4]

6. (i)
$$N = 20 \times 2^{0.8t}$$

When $t = 5$, $N = 20 \times 2^4 = 320$.

[2]
(ii)
$$20 \times 2^{0.8t} = 2000$$

 $2^{0.8t} = 100$
 $\ln 2^{0.8t} = \ln 100$
 $0.8t \ln 2 = \ln 100$
 $t = 8.30$
After 8.3 years.
[3]

F. (i) When
$$t = 0$$
, $T = 100$, so the initial temperature is 100° [1]

(íí) $T = 20 + 80e^{-0.5t}$ When t = 5, $T = 20 + 80e^{-2.5} = 26.6$ The temperature after 5 mínutes ís 26.6°.

(iii)
$$30 = 20 + 80e^{-0.5t}$$

 $80e^{-0.5t} = 10$
 $e^{-0.5t} = \frac{1}{8}$
 $-0.5t = \ln \frac{1}{8}$
 $t = 4.16$
After 4.16 minutes.
(iv) $\frac{dT}{dt} = 80 \times -0.5e^{-0.5t} = -40e^{-0.5t}$
when $t = 0$, $\frac{dT}{dt} = -40e^{0} = -40$
The initial rate of cooling is 40 degrees / minute.
When $t = 2$, $\frac{dT}{dt} = -40e^{-1} = -14.7$ degrees / minute.
The rate of cooling after 2 minutes is 14.7 degrees / minute.
[3]
(v) 20°
[1]

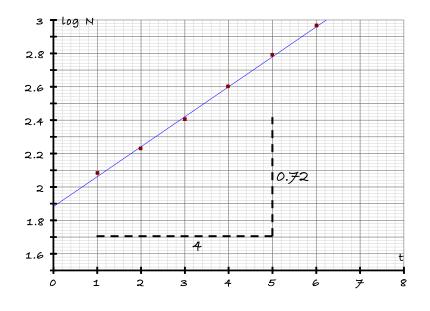
8. (i)
$$N = ab^{t}$$

 $\log N = \log (ab^{t})$
 $= \log a + \log b^{t}$
 $= \log a + t \log b$

This is the equation of a straight line graph with variables t and log N, so if the relationship is an appropriate model, then plotting log N against t should give an approximate straight line graph.

(íí)

t	1	2	3	4	5	6
N	120	170	250	400	620	910
log N	2.08	2.23	2.40	2.60	2.79	2.96



(iii) Equation of graph is
$$\log N = \log a + t \log b$$

Gradient $= \frac{0.72}{4} = 0.18$, so $\log b = 0.18 \implies b = 10^{0.18} \approx 1.5$
Intercept $= 1.88$, so $\log a = 1.88 \implies a = 10^{1.88} = 76$

(iv)
$$N = 76 \times 1.5^{t}$$

After 20 days, $N = 76 \times 1.5^{20} \approx 250000$ If conditions remain the same the estimate is likely to be good, but it could be that the bacteria growth slows if the environment cannot support those numbers.

[2]

[3]

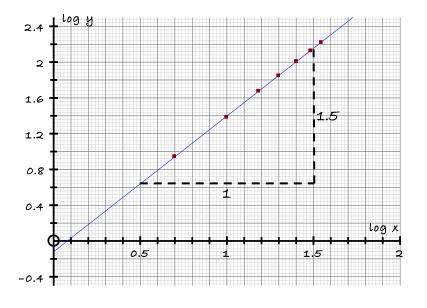
[3]

 $\mathcal{F}. \quad (i) \quad y = kx^{n}$ $\log y = \log (kx^{n})$ $= \log k + \log x^{n}$

 $= \log k + n \log x$

This is the equation of a straight line graph with variables log y and log x, so if the model is an appropriate one then plotting log y against log x will give an approximate straight line graph.

(íí)								
	Х	5	10	15	20	25	30	35
	y	9	24	48	69	102	131	166
	log X	0.70	1	1.18	1.30	1.40	1.48	1.54
	log y	0.95	1.38	1.68	1.84	2.01	2.12	2.22



[3]

(iii) Equation of graph is
$$\log y = \log k + n \log x$$

Gradient $= \frac{1.5}{1}$, so $n \approx 1.5$
Intercept $= -0.12$, so $\log k = -0.12 \implies k = 10^{-0.12} \approx 0.8$

[3]