Edexcel AS Mathematics Differentiation

[8]

Topic Assessment

1. Differentiate with respect to *x*:

(i)
$$y = x^4 + 2x - 3x^3$$
 (ii) $y = \frac{3 + 2x}{\sqrt{x}}$ (iii) $y = \frac{(x - 2)(2x + 1)}{x^4}$

2. Given that
$$x = (3u+2)(u^2-3)$$
, find $\frac{d^2x}{du^2}$ in terms of u . [3]

- 3. A curve has equation $y = 2x^3 3x^2 8x + 9$.
 - (i) Find the equation of the tangent to the curve at the point P(2, -3). [3]
 - (ii) Find the coordinates of the point Q at which the tangent is parallel to the tangent at P. [3]

4. (i)	Find the equation of the normal to the graph $y = x - \frac{2}{x^2}$ at the point where	
	x = 1.	[3]

- (ii) Show that the normal does not meet the curve again. [5]
- 5. A curve has equation $y = 2x^3 6x$.
 - (i) Find the points where the curve crosses the *x*-axis. [2] $dy = -\frac{dy}{dx} + \frac{dy}{dx} + \frac{dy}{dx$
 - (ii) Find $\frac{dy}{dx}$. Hence find the stationary points on the curve. [3]
 - (iii) Find $\frac{d^2 y}{dx^2}$, and use this to determine the nature of the stationary points. [3] (iv) Sketch the curve. [2]
- 6. Find the stationary points of the graph $y = \frac{1}{x} + \frac{1}{x^2} \frac{1}{x^3}$ and determine the nature of each. [7]
- 7. Two real numbers x and y are such that 2x + y = 100. Find the maximum value of the product of the two numbers. [5]
- 8. A cuboid has a square base of length x cm and height y cm.
 (i) Show that the surface area of the cuboid is 2x² + 4xy.
 (ii) Show that V = 6x 0.5x³
 (iii) Show that the maximum volume of the box occurs when x = 2, and find this maximum volume.
- 9. Use differentiation from first principles to show that the derivative of x^4 is $4x^3$.

[4]

Total 60 marks

Solutions to Topic Assessment

 $=-\frac{4}{\chi^3}+\frac{9}{\chi^4}+\frac{8}{\chi^5}$

1. (i)
$$y = x^{4} + 2x - 3x^{3} \Rightarrow \frac{dy}{dx} = 4x^{3} + 2 - 9x^{2}$$
[2]
(ii) $y = \frac{3 + 2x}{\sqrt{x}} = 3x^{-\frac{1}{2}} + 2x^{\frac{1}{2}}$

$$\frac{dy}{dx} = 3x - \frac{1}{2}x^{-\frac{3}{2}} + 2 \times \frac{1}{2}x^{-\frac{1}{2}}$$

$$= -\frac{3}{2\sqrt{x^{3}}} + \frac{1}{\sqrt{x}}$$
[3]
(iii) $y = \frac{(x - 2)(2x + 1)}{x^{4}} = \frac{2x^{2} - 3x - 2}{x^{4}} = 2x^{-2} - 3x^{-3} - 2x^{-4}$

$$\frac{dy}{dx} = 2x - 2x^{-3} - 3x - 3x^{-4} - 2x - 4x^{-5}$$

$$= -4x^{-3} + 9x^{-4} + 8x^{-5}$$

2.
$$x = (3u+2)(u^{2}-3) = 3u^{3} + 2u^{2} - 9u - 6$$
$$\frac{dx}{du} = 9u^{2} + 4u - 9$$
$$\frac{d^{2}x}{du^{2}} = 18u + 4$$
[3]

3. (i)
$$y = 2x^3 - 3x^2 - 8x + 9$$

 $\frac{dy}{dx} = 6x^2 - 6x - 8$
When $x = 2$, $\frac{dy}{dx} = 6 \times 2^2 - 6 \times 2 - 8 = 24 - 12 - 8 = 4$
Tangent has gradient 4 and passes through (2, -3)
Equation of tangent is $y + 3 = 4(x - 2)$
 $y + 3 = 4x - 8$
 $y = 4x - 11$
[3]

(ii) When gradient = 4, $6x^2 - 6x - 8 = 4$ $6x^2 - 6x - 12 = 0$ $x^2 - x - 2 = 0$ (x - 2)(x + 1) = 0 x = 2 or x = -1P is the point where x = 2, so Q is the point where x = -1. When x = -1, $y = 2(-1)^3 - 3(-1)^2 - 8(-1) + 9 = -2 - 3 + 8 + 9 = 12$ The coordinates of Q are (-1, 12).

$$\frac{dy}{dx} = 1 + 4x^{-3} = 1 + \frac{4}{x^3}$$

when x = 1, $\frac{dy}{dx} = 1 + \frac{4}{1^3} = 1 + 4 = 5$
so gradient of normal is $-\frac{1}{5}$

 $y = x - \frac{2}{x^2} = x - 2x^{-2}$

When
$$x = 1$$
, $y = -1$
Equation of normal is $y + 1 = -\frac{1}{5}(x - 1)$
 $y + 1 = -\frac{1}{5}x + \frac{1}{5}$
 $y = -\frac{1}{5}x - \frac{4}{5}$

(ii) If normal meets curve again,
$$-\frac{1}{5}x - \frac{4}{5} = x - \frac{2}{x^2}$$

 $-x - 4 = 5x - \frac{10}{x^2}$
 $6x - \frac{10}{x^2} + 4 = 0$
 $6x^3 + 4x^2 - 10 = 0$
 $3x^3 + 2x^2 - 5 = 0$
The normal meets the curve at $x = 1$, so $(x - 1)$ is a factor
 $(x - 1)(3x^2 + 5x + 5) = 0$

The discriminant of the quadratic is $25 - 4 \times 3 \times 5 = 25 - 60 = -35 < 0$ So the quadratic has no real roots, and therefore the normal does not meet the curve again.

5. (i)
$$y = 2x^3 - 6x$$

When $y = 0$, $2x^3 - 6x = 0$
 $x^3 - 3x = 0$
 $x(x^2 - 3) = 0$
 $x = 0$ or $x^2 = 3 \Rightarrow x = \pm\sqrt{3}$
So the graph cuts the x-axis at the origin and at the points $(\sqrt{3}, 0)$ and $(-\sqrt{3}, 0)$.
(ii) $\frac{dy}{dx} = 6x^2 - 6$
At stationary points, $6x^2 - 6 = 0$
 $x^2 - 1 = 0$
 $(x - 1)(x + 1) = 0$
 $x = 1$ or $x = -1$
When $x = 1$, $y = 2 \times 1^3 - 6 \times 1 = 2 - 6 = -4$
When $x = -1$, $y = 2 \times -1^3 - 6 \times -1 = -2 + 6 = 4$
so the stationary points are $(1, -4)$ and $(-1, 4)$.
(iii) $\frac{d^2 y}{dx^2} = 12x$
When $x = 1$, $\frac{d^2 y}{dx^2} = 12 > 0$ so $(1, -4)$ is a minimum point.
When $x = -1$, $\frac{d^2 y}{dx^2} = -12 < 0$ so $(-1, 4)$ is a maximum point.
[3]
(iv) $(-1, 4)$

[2]

6. $y = \frac{1}{x} + \frac{1}{x^2} - \frac{1}{x^3} = x^{-1} + x^{-2} - x^{-3}$ $\frac{dy}{dx} = -x^{-2} - 2x^{-3} + 3x^{-4} = -\frac{1}{x^2} - \frac{2}{x^3} + \frac{3}{x^4}$ At stationary points, $-\frac{1}{x^2} - \frac{2}{x^3} + \frac{3}{x^4} = 0$ $\frac{1}{x^4} (-x^2 - 2x + 3) = 0$ $x^2 + 2x - 3 = 0$ (x + 3) (x - 1) = 0 x = -3 or x = 1When x = -3, $y = -\frac{1}{3} + \frac{1}{9} + \frac{1}{27} = -\frac{5}{27}$ When x = 1, y = 1 + 1 - 1 = 1 $\frac{d^2 y}{dx^2} = 2x^{-3} + 6x^{-4} - 12x^{-5} = \frac{2}{x^3} + \frac{6}{x^4} - \frac{12}{x^5}$ When x = -3, $\frac{d^2 y}{dx^2} = -\frac{2}{27} + \frac{6}{81} + \frac{12}{243} > 0$ When x = 1, $\frac{d^2 y}{dx^2} = 2 + 6 - 12 < 0$ so $(-3, -\frac{5}{27})$ is a minimum point and (1, 1) is a maximum point.

7. $2x + y = 100 \implies y = 100 - 2x$ Product of numbers $P = xy = x(100 - 2x) = 100x - 2x^2$ dP

$$\frac{-1}{dx} = 100 - 4x$$

dx
At stationary point, 100 - 4x = 0

P is a quadratic function, and the coefficient of x^2 is negative, so the stationary point must be a maximum point.

When x = 25, y = 50, and P = 1250. The maximum value of the product of x and y is 1250.

[5]

[7]

8. (i) The area of the base and the top are each x^2 square cm, and the other four sídes each have area xy square cm. Total surface area $= 2x^2 + 4xy$.

[2]

(ii)
$$2x^2 + 4xy = 24$$

 $x^2 + 2xy = 12$
 $2xy = 12 - x^2$
 $y = \frac{12 - x^2}{2x}$
 $v = x^2y$
 $= x^2 \times \frac{12 - x^2}{2x}$
 $= x\left(\frac{12 - x^2}{2}\right) = 6x - 0.5x^3$
(iii) $\frac{dv}{dx} = 6 - 1.5x^2$
At turning points, $6 - 1.5x^2 = 0$
 $\frac{3x^2}{2} = 6$
 $x^2 = 4$
 $x = \pm 2$
Since x cannot be negative, x must be 2.
 $\frac{d^2v}{dx^2} = -3x$
When $x = 2$, $\frac{d^2v}{dx^2} = -6 < 0$, so $x = 2$ is a maximum point.
 $v = 6 \times 2 - 0.5 \times 2^3 = 12 - 4 = 8$
The maximum volume of the box is 8 cm³.

9.
$$f(x) = x^{4}$$

$$f(x+h) = (x+h)^{4} = x^{4} + 4x^{3}h + 6x^{2}h^{2} + 4xh^{3} + h^{4}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{(x+h) - x}$$

$$= \lim_{h \to 0} \frac{x^{4} + 4x^{3}h + 6x^{2}h^{2} + 4xh^{3} + h^{4} - x^{4}}{h}$$

$$= \lim_{h \to 0} \frac{4x^{3}h + 6x^{2}h^{2} + 4xh^{3} + h^{4}}{h}$$

$$= \lim_{h \to 0} (4x^{3} + 6x^{2}h + 4xh^{2} + h^{3})$$

$$= 4x^{3}$$