Topic Assessment

1. Differentiate with respect to x :
(i) $y=x^{4}+2 x-3 x^{3}$
(ii) $y=\frac{3+2 x}{\sqrt{x}}$
(iii) $y=\frac{(x-2)(2 x+1)}{x^{4}}$
2. Given that $x=(3 u+2)\left(u^{2}-3\right)$, find $\frac{\mathrm{d}^{2} x}{\mathrm{~d} u^{2}}$ in terms of u.
3. A curve has equation $y=2 x^{3}-3 x^{2}-8 x+9$.
(i) Find the equation of the tangent to the curve at the point $\mathrm{P}(2,-3)$.
(ii) Find the coordinates of the point Q at which the tangent is parallel to the tangent at P.
4. (i) Find the equation of the normal to the graph $y=x-\frac{2}{x^{2}}$ at the point where $x=1$.
(ii) Show that the normal does not meet the curve again.
5. A curve has equation $y=2 x^{3}-6 x$.
(i) Find the points where the curve crosses the x-axis.
(ii) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$. Hence find the stationary points on the curve.
(iii) Find $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$, and use this to determine the nature of the stationary points.
(iv) Sketch the curve.
6. Find the stationary points of the graph $y=\frac{1}{x}+\frac{1}{x^{2}}-\frac{1}{x^{3}}$ and determine the nature of each.
7. Two real numbers x and y are such that $2 x+y=100$. Find the maximum value of the product of the two numbers.
8. A cuboid has a square base of length $x \mathrm{~cm}$ and height $y \mathrm{~cm}$.
(i) Show that the surface area of the cuboid is $2 x^{2}+4 x y$.

The surface area of the cuboid is $24 \mathrm{~cm}^{2}$.
(ii) Show that $V=6 x-0.5 x^{3}$
(iii) Show that the maximum volume of the box occurs when $x=2$, and find this maximum volume.
9. Use differentiation from first principles to show that the derivative of x^{4} is $4 x^{3}$.

Solutions to Topic Assessment

1. (i) $y=x^{4}+2 x-3 x^{3} \Rightarrow \frac{d y}{d x}=4 x^{3}+2-9 x^{2}$
(ii) $y=\frac{3+2 x}{\sqrt{x}}=3 x^{-\frac{1}{2}}+2 x^{\frac{1}{2}}$

$$
\begin{aligned}
\frac{d y}{d x} & =3 \times-\frac{1}{2} x^{-\frac{3}{2}}+2 \times \frac{1}{2} x^{-\frac{1}{2}} \\
& =-\frac{3}{2 \sqrt{x^{3}}}+\frac{1}{\sqrt{x}}
\end{aligned}
$$

(iii) $y=\frac{(x-2)(2 x+1)}{x^{4}}=\frac{2 x^{2}-3 x-2}{x^{4}}=2 x^{-2}-3 x^{-3}-2 x^{-4}$

$$
\begin{aligned}
\frac{d y}{d x} & =2 \times-2 x^{-3}-3 x-3 x^{-4}-2 x-4 x^{-5} \\
& =-4 x^{-3}+9 x^{-4}+8 x^{-5} \\
& =-\frac{4}{x^{3}}+\frac{9}{x^{4}}+\frac{8}{x^{5}}
\end{aligned}
$$

2. $x=(3 u+2)\left(u^{2}-3\right)=3 u^{3}+2 u^{2}-9 u-6$

$$
\begin{aligned}
& \frac{d x}{d u}=9 u^{2}+4 u-9 \\
& \frac{d^{2} x}{d u^{2}}=18 u+4
\end{aligned}
$$

3. (i) $y=2 x^{3}-3 x^{2}-8 x+9$

$$
\frac{d y}{d x}=6 x^{2}-6 x-8
$$

When $x=2, \frac{d y}{d x}=6 \times 2^{2}-6 \times 2-8=24-12-8=4$
Tangent has gradient 4 and passes through $(2,-3)$
Equation of tangent is $y+3=4(x-2)$

$$
\begin{aligned}
& y+3=4 x-8 \\
& y=4 x-11
\end{aligned}
$$

Edexcel AS Maths Differentiation Assessment solutions

(ii) When gradient $=4,6 x^{2}-6 x-8=4$

$$
\begin{aligned}
& 6 x^{2}-6 x-12=0 \\
& x^{2}-x-2=0 \\
& (x-2)(x+1)=0 \\
& x=2 \text { or } x=-1
\end{aligned}
$$

P is the point where $x=2$, so Q is the point where $x=-1$.
When $x=-1, y=2(-1)^{3}-3(-1)^{2}-8(-1)+9=-2-3+8+9=12$
The coordinates of Q are $(-1,12)$.
4. (i) $y=x-\frac{2}{x^{2}}=x-2 x^{-2}$
$\frac{d y}{d x}=1+4 x^{-3}=1+\frac{4}{x^{3}}$
When $x=1, \frac{d y}{d x}=1+\frac{4}{1^{3}}=1+4=5$
so gradient of normal is $-\frac{1}{5}$
When $x=1, y=-1$
Equation of normal is $y+1=-\frac{1}{5}(x-1)$

$$
\begin{aligned}
& y+1=-\frac{1}{5} x+\frac{1}{5} \\
& y=-\frac{1}{5} x-\frac{4}{5}
\end{aligned}
$$

(ii) If normal meets curve again, $-\frac{1}{5} x-\frac{4}{5}=x-\frac{2}{x^{2}}$

$$
\begin{aligned}
& -x-4=5 x-\frac{10}{x^{2}} \\
& 6 x-\frac{10}{x^{2}}+4=0 \\
& 6 x^{3}+4 x^{2}-10=0 \\
& 3 x^{3}+2 x^{2}-5=0
\end{aligned}
$$

The normal meets the curve at $x=1$, so $(x-1)$ is a factor

$$
(x-1)\left(3 x^{2}+5 x+5\right)=0
$$

The discriminant of the quadratic is $25-4 \times 3 \times 5=25-60=-35<0$ So the quadratic has no real roots, and therefore the normal does not meet the curve again.

Edexcel AS Maths Differentiation Assessment solutions

5. (i) $y=2 x^{3}-6 x$

When $y=0,2 x^{3}-6 x=0$

$$
\begin{aligned}
& x^{3}-3 x=0 \\
& x\left(x^{2}-3\right)=0 \\
& x=0 \text { or } x^{2}=3 \Rightarrow x= \pm \sqrt{3}
\end{aligned}
$$

So the graph cuts the x-axis at the origin and at the points $(\sqrt{3}, 0)$ and $(-\sqrt{3}, 0)$.
(ii) $\frac{d y}{d x}=6 x^{2}-6$

At stationary points, $6 x^{2}-6=0$

$$
\begin{aligned}
& x^{2}-1=0 \\
& (x-1)(x+1)=0 \\
& x=1 \text { or } x=-1
\end{aligned}
$$

When $x=1, y=2 \times 1^{3}-6 \times 1=2-6=-4$
When $x=-1, y=2 \times-1^{3}-6 \times-1=-2+6=4$
so the stationary points are $(1,-4)$ and $(-1,4)$.
(iii) $\frac{d^{2} y}{d x^{2}}=12 x$

When $x=1, \frac{d^{2} y}{d x^{2}}=12>0$ so $(1,-4)$ is a minimum point.
When $x=-1, \frac{d^{2} y}{d x^{2}}=-12<0$ so $(-1,4)$ is a maximum point.
(iv)

Edexcel AS Maths Differentiation Assessment solutions

6. $y=\frac{1}{x}+\frac{1}{x^{2}}-\frac{1}{x^{3}}=x^{-1}+x^{-2}-x^{-3}$
$\frac{d y}{d x}=-x^{-2}-2 x^{-3}+3 x^{-4}=-\frac{1}{x^{2}}-\frac{2}{x^{3}}+\frac{3}{x^{4}}$
At stationary points, $-\frac{1}{x^{2}}-\frac{2}{x^{3}}+\frac{3}{x^{4}}=0$

$$
\begin{gathered}
\frac{1}{x^{4}}\left(-x^{2}-2 x+3\right)=0 \\
x^{2}+2 x-3=0 \\
(x+3)(x-1)=0 \\
x=-3 \text { or } x=1
\end{gathered}
$$

When $x=-3, y=-\frac{1}{3}+\frac{1}{9}+\frac{1}{27}=-\frac{5}{27}$
When $x=1, y=1+1-1=1$
$\frac{d^{2} y}{d x^{2}}=2 x^{-3}+6 x^{-4}-12 x^{-5}=\frac{2}{x^{3}}+\frac{6}{x^{4}}-\frac{12}{x^{5}}$
When $x=-3, \frac{d^{2} y}{d x^{2}}=-\frac{2}{27}+\frac{6}{81}+\frac{12}{243}>0$
When $x=1, \frac{d^{2} y}{d x^{2}}=2+6-12<0$
so $\left(-3,-\frac{5}{27}\right)$ is a minimum point and $(1,1)$ is a maximum point.
7. $2 x+y=100 \Rightarrow y=100-2 x$

Product of numbers $P=x y=x(100-2 x)=100 x-2 x^{2}$
$\frac{d P}{d x}=100-4 x$
At stationary point, $100-4 x=0$

$$
x=25
$$

P is a quadratic function, and the coefficient of x^{2} is negative, so the stationary point must be a maximum point.
When $x=25, y=50$, and $P=1250$.
The maximum value of the product of x and y is 1250 .
8. (i) The area of the base and the top are each x^{2} square cm , and the other four sides each have area $x y$ square cm .
Total surface area $=2 x^{2}+4 x y$.
(ii) $2 x^{2}+4 x y=24$

$$
\begin{aligned}
& x^{2}+2 x y=12 \\
& 2 x y=12-x^{2} \\
& y=\frac{12-x^{2}}{2 x}
\end{aligned}
$$

$$
v=x^{2} y
$$

$$
=x^{2} \times \frac{12-x^{2}}{2 x}
$$

$$
=x\left(\frac{12-x^{2}}{2}\right)=6 x-0.5 x^{3}
$$

(iii) $\frac{d v}{d x}=6-1.5 x^{2}$

At turning points, $6-1.5 x^{2}=0$

$$
\begin{aligned}
& \frac{3 x^{2}}{2}=6 \\
& x^{2}=4 \\
& x= \pm 2
\end{aligned}
$$

Since x cannot be negative, x must be 2 .

$$
\frac{d^{2} V}{d x^{2}}=-3 x
$$

When $x=2, \frac{d^{2} V}{d x^{2}}=-6<0$, so $x=2$ is a maximum point.

$$
v=6 \times 2-0.5 \times 2^{3}=12-4=8
$$

The maximum volume of the box is $8 \mathrm{~cm}^{3}$.
9. $f(x)=x^{4}$

$$
\begin{aligned}
& f(x+h)=(x+h)^{4}=x^{4}+4 x^{3} h+6 x^{2} h^{2}+4 x h^{3}+h^{4} \\
& \begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{(x+h)-x} \\
& =\lim _{h \rightarrow 0} \frac{x^{4}+4 x^{3} h+6 x^{2} h^{2}+4 x h^{3}+h^{4}-x^{4}}{h} \\
& =\lim _{h \rightarrow 0} \frac{4 x^{3} h+6 x^{2} h^{2}+4 x h^{3}+h^{4}}{h} \\
& =\lim _{h \rightarrow 0}\left(4 x^{3}+6 x^{2} h+4 x h^{2}+h^{3}\right) \\
& =4 x^{3}
\end{aligned}
\end{aligned}
$$

