Edexcel AS Mathematics Coordinate geometry

Topic assessment

1. A line l_{1} has equation $5 y+4 x=3$.
(i) Find the gradient of the line.
(ii) Find the equation of the line l_{2} which is parallel to l_{1} and passes through the point (1, -2).
2. Describe fully the curve whose equation is $x^{2}+y^{2}=4$.
3. The coordinates of two points are $\mathrm{A}(-1,-3)$ and $\mathrm{B}(5,7)$. Calculate the equation of the perpendicular bisector of $A B$.
4. Show that the line $y=3 x-10$ is a tangent to the circle $x^{2}+y^{2}=10$.
5. The line $y=2 x-3$ meets the x-axis at the point P , and the line $3 y+4 x=8$ meets the x axis at the point Q . The two lines intersect at the point R .
(i) Find the coordinates of R.
(ii) Find the area of triangle $P Q R$.
6. The equation of a circle is $x^{2}+y^{2}-4 x+2 y=15$
(i) Find the coordinates of the centre C of the circle, and the radius of the circle.
(ii) Show that the point $\mathrm{P}(4,-5)$ lies on the circle.
(iii) Find the equation of the tangent to the circle at the point P .
7. The coordinates of four points are $\mathrm{P}(-2,-1), \mathrm{Q}(6,3), \mathrm{R}(9,2)$ and $\mathrm{S}(1,-2)$.
(i) Calculate the gradients of the lines $\mathrm{PQ}, \mathrm{QR}, \mathrm{RS}$ and SP .
(ii) What name is given to the quadrilateral PQRS ?
(iii) Calculate the length SR.
(iv) Show that the equation of SR is $2 y=x-5$ and find the equation of the line L through Q perpendicular to $S R$.
(v) Calculate the coordinates of the point T where the line L meets SR.
(vi) Calculate the area of the quadrilateral PQRS.
8. AB is the diameter of a circle. A is $(1,3)$ and B is $(7,-1)$.
(i) Find the coordinates of the centre C of the circle.
(ii) Find the radius of the circle.
(iii) Find the equation of the circle.
(iv) The line $y+5 x=8$ cuts the circle at A and again at a second point D . Calculate the coordinates of D .
(v) Prove that the line AB is perpendicular to the line CD .

Edexcel AS Maths Coordinate geometry Assessment solutions

Solutions to topic assessment

1. (i) $5 y+4 x=3$.
$5 y=-4 x+3$
$y=-\frac{4}{5} x+\frac{3}{5}$
Gradient of line $=-\frac{4}{5}$
(ii) l_{2} is parallel to l_{1}, so it has gradient $-\frac{4}{5}$.

Equation of line is $y-(-2)=-\frac{4}{5}(x-1)$

$$
\begin{aligned}
& 5(y+2)=-4(x-1) \\
& 5 y+10=-4 x+4 \\
& 5 y+4 x+6=0
\end{aligned}
$$

2. The curve is a circle, centre O and radius 2.
3. Gradient of $A B=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}=\frac{-3-7}{-1-5}=\frac{-10}{-6}=\frac{5}{3}$

Gradient of line perpendicular to $A B=-\frac{3}{5}$.
The line passes through the midpoint of $A B=\left(\frac{-1+5}{2}, \frac{-3+7}{2}\right)=(2,2)$
Equation of line is $y-2=-\frac{3}{5}(x-2)$

$$
\begin{aligned}
& 5(y-2)=-3(x-2) \\
& 5 y-10=-3 x+6 \\
& 5 y+3 x=16
\end{aligned}
$$

4. Substituting $y=3 x-10$ into $x^{2}+y^{2}=10$
gives $x^{2}+(3 x-10)^{2}=10$

$$
\begin{aligned}
& x^{2}+9 x^{2}-60 x+100=10 \\
& 10 x^{2}-60 x+90=0 \\
& x^{2}-6 x+9=0 \\
& (x-3)^{2}=0
\end{aligned}
$$

Since the equation has a repeated root, the line meets the circle just once, and so the line is a tangent to the circle.

Edexcel AS Maths Coordinate geometry Assessment solutions

5. (i) Substítuting $y=2 x-3$ into $3 y+4 x=8$:

$$
\begin{aligned}
& 3(2 x-3)+4 x=8 \\
& 6 x-9+4 x=8 \\
& 10 x=17 \\
& x=1.7
\end{aligned}
$$

When $x=1.7, y=2 \times 1.7-3=3.4-3=0.4$
The coordinates of R are $(1.7,0.4)$
(ii) P is the point on $y=2 x-3$ where $y=0$, so P is $(1.5,0)$
Q is the point on $3 y+4 x=8$ where $y=0$, so Q is $(2,0)$.
Area $=\frac{1}{2} \times$ base \times height

$$
\begin{aligned}
& =\frac{1}{2} \times 0.5 \times 0.4 \\
& =0.1
\end{aligned}
$$

6. (i) $x^{2}+y^{2}-4 x+2 y=15$
$x^{2}-4 x+y^{2}+2 y=15$
$(x-2)^{2}-4+(y+1)^{2}-1=15$

$(x-2)^{2}+(y+1)^{2}=20$
The centre c of the circle is $(2,-1)$ and the radius is $\sqrt{20}$.
(ii) Substituting $x=4$ and $y=-5: \quad(4-2)^{2}+(-5+1)^{2}=4+16=20$ so the point $(4,-5)$ lies on the circle.
(iii) Gradient of $C P=\frac{-1-(-5)}{2-4}=\frac{4}{-2}=-2$

Tangent at P is perpendicular to $C P$, so gradient of tangent $=\frac{1}{2}$.
Equation of tangent is $y-(-5)=\frac{1}{2}(x-4)$

$$
\begin{aligned}
& 2(y+5)=x-4 \\
& 2 y+10=x-4 \\
& 2 y=x-14
\end{aligned}
$$

7. (i) Gradient of $P Q=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}=\frac{-1-3}{-2-6}=\frac{-4}{-8}=\frac{1}{2}$

$$
\begin{align*}
& \text { Gradient of } Q R=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}=\frac{3-2}{6-9}=\frac{1}{-3}=-\frac{1}{3} \\
& \text { Gradient of } R S=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}=\frac{2-(-2)}{9-1}=\frac{4}{8}=\frac{1}{2} \\
& \text { Gradient of } S P=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}=\frac{-2-(-1)}{1-(-2)}=\frac{-1}{3}=-\frac{1}{3} \tag{4}
\end{align*}
$$

Edexcel AS Maths Coordinate geometry Assessment solutions

(ii) $P Q$ is parallel to RS, and $Q R$ is parallel to $S P$, so the quadrilateral is a parallelogram.
(iii) $S R=\sqrt{(9-1)^{2}+(2-(-2))^{2}}=\sqrt{64+16}=\sqrt{80}$
(iv) From (i), gradient of $S R=\frac{1}{2}$

Equation of $S R$ is $y-(-2)=\frac{1}{2}(x-1)$

$$
\begin{aligned}
& 2(y+2)=x-1 \\
& 2 y+4=x-1 \\
& 2 y=x-5
\end{aligned}
$$

Line perpendicular to $S R$ has gradient -2
Line L has gradient -2 and goes through $(6,3)$
Equation of L is $y-3=-2(x-6)$

$$
\begin{aligned}
& y-3=-2 x+12 \\
& y+2 x=15
\end{aligned}
$$

(v) Equation of L is $y=15-2 x$

Substituting into equation of SR gives $2(15-2 x)=x-5$

$$
\begin{aligned}
& 30-4 x=x-5 \\
& 35=5 x \\
& x=7
\end{aligned}
$$

When $x=7, y=15-2 \times 7=1$
coordinates of T are $(7,1)$
(Vi)

Length QT $=\sqrt{(7-6)^{2}+(1-3)^{2}}=\sqrt{1+4}=\sqrt{5}$
Area of parallelogram $=S R \times Q T$

$$
\begin{aligned}
& =\sqrt{80} \sqrt{5} \\
& =\sqrt{16} \sqrt{5} \sqrt{5} \\
& =4 \times 5=20
\end{aligned}
$$

Edexcel AS Maths Coordinate geometry Assessment solutions

8. (i) C is the midpoint of $A B$.
$c=\left(\frac{1+7}{2}, \frac{3+(-1)}{2}\right)=(4,1)$
(ii) Radius of circle $=C A=\sqrt{(4-1)^{2}+(1-3)^{2}}=\sqrt{9+4}=\sqrt{13}$
(iii) Equation of circle is $(x-4)^{2}+(y-1)^{2}=13$
(iv) Substituting $y=-5 x+8$ into equation of circle:

$$
\begin{aligned}
& (x-4)^{2}+(-5 x+8-1)^{2}=13 \\
& (x-4)^{2}+(-5 x+7)^{2}=13 \\
& x^{2}-8 x+16+25 x^{2}-70 x+49=13 \\
& 26 x^{2}-78 x+52=0 \\
& x^{2}-3 x+2=0 \\
& (x-1)(x-2)=0 \\
& x=1 \text { or } x=2
\end{aligned}
$$

$x=1$ is point A, so point D is $x=2$
When $x=2, y=-5 \times 2+8=-2$
The coordinates of D are $(2,-2)$
(v) Gradient of $A B=\frac{3-(-1)}{1-7}=\frac{4}{-6}=-\frac{2}{3}$

Gradient of $C D=\frac{1-(-2)}{4-2}=\frac{3}{2}$
Gradient of $A B \times$ gradient of $C D=-\frac{2}{3} \times \frac{3}{2}=-1$
so $A B$ is perpendicular to $C D$.

