

Section 1: Introduction to vectors

Section test

- 1. Write the vector $5\mathbf{i} 3\mathbf{j}$ in magnitude-direction form.
- 2. Write the vector (8,200°) in component form.
- 3. The points A and B have coordinates (-2, 3) and (2, -5) respectively. Find the vector \overrightarrow{AB} .
- 4. The diagram shows two vectors, **u** and **v**.

Find the vector $\mathbf{u} - \mathbf{v}$.

5. The vectors \mathbf{a} , \mathbf{b} and \mathbf{c} are $\mathbf{a} = 5\mathbf{i} - 2\mathbf{j}$ $\mathbf{b} = -3\mathbf{i} + 4\mathbf{j}$ $\mathbf{c} = 5\mathbf{j}$

Find the vector $2(\mathbf{a}-\mathbf{b})+3\mathbf{c}$.

- 6. Find the unit vector in the same direction as $\begin{pmatrix} -3 \\ 4 \end{pmatrix}$.
- 7. The vectors $\begin{pmatrix} 1 \\ -3 \end{pmatrix}$ and $\begin{pmatrix} 5 \\ k \end{pmatrix}$ are parallel. Find the value of *k*.
- 8. Given that $p\begin{pmatrix} 2\\ -1 \end{pmatrix} + \begin{pmatrix} 3\\ 4 \end{pmatrix} = \begin{pmatrix} q\\ 1 \end{pmatrix}$, find the values of p and q.
- 9. Two forces are given by $\mathbf{F}_1 = 3\mathbf{i} + 2\mathbf{j}$ and $\mathbf{F}_2 = a\mathbf{i} + b\mathbf{j}$. The resultant of \mathbf{F}_1 and \mathbf{F}_2 is $7\mathbf{i} 3\mathbf{j}$. Find the values of *a* and *b*.

EdExcel AS Maths Vectors 1 section test

10. In a parallelogram WXYZ, $\overrightarrow{WX} = \mathbf{a}$ and $\overrightarrow{XY} = \mathbf{b}$. The point P is $\frac{2}{3}$ of the way along the diagonal XZ. Find the vector \overrightarrow{YP} in terms of \mathbf{a} and \mathbf{b} .