Edexcel AS Maths Exponentials \& logarithms

Section 2: Natural logarithms and exponentials

Section test

1. Solve the equation $\mathrm{e}^{2-x}=0.5$.
2. Solve the equation $\ln (1-2 x)=0.4$.
3. Solve the equation $2 \mathrm{e}^{x}+3 \mathrm{e}^{-x}=7$
4. Solve the equation $2 \ln x+1=\ln (2 x)$.
5. Four graphs $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S are shown below.

Which one is the graph of $y=\mathrm{e}^{x}$?
Which one is the graph of $y=\ln x$?
6. The temperature T of a hot cup of tea at time t is given by the formula

$$
T=20+70 \mathrm{e}^{-t}
$$

This formula can be rearranged to give t in terms of T as follows:
(a) $t=\ln \left(\frac{T-20}{70}\right)$
(b) $t=\ln \left(\frac{70}{T-20}\right)$
(c) $t=\frac{20-\ln T}{70}$
(d) $t=\frac{\ln T-20}{70}$

Edexcel AS Maths Exponentials \& logs 2 section test

7. The speed, $v \mathrm{~ms}^{-1}$ of a parachutist after t seconds is given by

$$
v=10+20 \mathrm{e}^{-0.01 t}
$$

Find the speed of the object after 20 seconds.
Find the time at which the speed of the parachutist is $15 \mathrm{~ms}^{-1}$.
8. The number N of insects in a colony after t days is modelled by $N=20 \mathrm{e}^{0.2 t}$. Find the number of insects (to the nearest whole number) after 10 days.
After how many complete days does the number of insects first exceed 50000?

