Edexcel AS Mathematics Integration

Section 1: Introduction to integration

Section test

1. If $\frac{\mathrm{d} y}{\mathrm{~d} x}=x^{10}$, find an expression for y.
2. Given that $\frac{\mathrm{d} y}{\mathrm{~d} x}=1+3 x^{2}$, then
(a) $y=x^{3}+c$
(b) $y=x+x^{3}+c$
(c) $y=x+x^{3}$
(d) $y=6 x+c$
3. $\int\left(2 x^{5}-4 x\right) \mathrm{d} x=$
(a) $\frac{1}{5} x^{6}-4 x^{2}+c$
(b) $\frac{1}{6} x^{6}-\frac{1}{2} x^{2}+c$
(c) $\frac{1}{3} x^{6}-2 x^{2}+c$
(d) $10 x^{4}-4+c$
4. Given that $\mathrm{f}^{\prime}(x)=(1+3 x)^{2}$, then
(a) $\mathrm{f}(x)=6+18 x$
(b) $\mathrm{f}(x)=x+3 x^{2}+3 x^{3}$
(c) $\mathrm{f}(x)=x+3 x^{3}+c$
(d) $\mathrm{f}(x)=x+3 x^{2}+3 x^{3}+c$
5. Given that $\mathrm{f}^{\prime}(x)=\frac{\left(x^{2}+2 x^{3}\right)}{2 x}, \mathrm{f}(x)$ is given by
(a) $\mathrm{f}(x)=\frac{\frac{1}{3} x^{3}+\frac{1}{2} x^{4}}{x^{2}}$
(b) $\mathrm{f}(x)=\frac{2 x^{3}+3 x^{4}}{6 x^{2}}+c$
(c) $\mathrm{f}(x)=\frac{1}{4} x^{2}+\frac{1}{3} x^{3}+c$
(d) $\mathrm{f}(x)=\frac{1}{2} x+\frac{1}{3} x^{3}+c$
(e) I don't know
6. Given that $\frac{\mathrm{d} y}{\mathrm{~d} x}=x^{2}$ and $y=2$ when $x=1$, find y.
7. Given that $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x^{3}-x-5$ and that $y=-1$ when $x=2$, find the value of y when $x=1$.
8. A curve has gradient function $\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}-2 x+1$ and passes through the point $(2,5)$. The equation of the curve is
(a) $y=x^{3}-x^{2}+x+5$
(b) $y=x^{3}-x^{2}+x+c$
(c) $y=6 x-2$
(d) $y=x^{3}-x^{2}+x-1$

Edexcel AS Maths Integration 1 section test solutions

9. A curve has gradient function $\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x-2$ and passes through the point $(2,0)$. What is the y-coordinate of the point on the curve where $x=-1$?
10. A curve has gradient function $\frac{\mathrm{d} y}{\mathrm{~d} x}=x^{2}-x+1$ and passes through the point $(-1,1)$. What is the y-coordinate of the point on the curve where $x=2$?
