

Section 4: More about differentiation

Section test

- 1. Given that $y = x^3 + 2x^2 3x + 1$, find the value of $\frac{d^2 y}{dx^2}$ when x = -2.
- 2. Given that $f(x) = \frac{1}{x} \sqrt{x}$, find the value of f''(x) when x = 4.
- 3. The point (a, b) is a local maximum if when x = a(a) $\frac{dy}{dx} < 0$ and $\frac{d^2y}{dx^2} > 0$ (b) $\frac{dy}{dx} = 0$ and $\frac{d^2y}{dx^2} > 0$ (c) $\frac{dy}{dx} > 0$ and $\frac{d^2y}{dx^2} < 0$ (d) $\frac{dy}{dx} = 0$ and $\frac{d^2y}{dx^2} < 0$

4. Given that
$$y = 3x(1-x^3)$$
, $\frac{d^2 y}{dx^2} =$
(a) $3-12x^3$ (b) $-36x^2$
(c) 0 (d) $-18x^2$

- 5. Given that x + y = 60, what is the maximum value of $x^2 y$? What is the value of x for this maximum value?
- 6. A straight wall AB and a fence of length 10 m form a rectangular enclosure. The width of the enclosure is x m.

Find an expression for the area of the enclosure, in m^2 , in terms of *x*. What is the maximum possible area of the enclosure?

- 7. A curve has equation y = f(x), where $f(x) = x^3 + x$. The gradient of the chord joining (1,2) to (1+h, f(1+h)) on the curve is
- (a) 4+h(b) $4+3h+h^{2}$ (c) $\frac{-1+3h+3h^{2}+h^{3}}{h}$ (d) $\frac{1+3h+3h^{2}+h^{3}}{h}$

MEI AS Maths Differentiation 2 section test solutions

- 8. A curve has equation y = f(x), where $f(x) = 5x^2$. The gradient of the chord joining (x, f(x)) to (x+h, f(x+h)) on the curve is
- (a) 10x + h(b) $\frac{5x^2 + 10hx + 5}{x + h}$ (c) 10x + 5h(d) $\frac{5x^2 + 10xh + 5h^2}{h}$