Section 3: Extending the rule

Section test

1. The derivative of $\sqrt[4]{x}$ is
(a) $\frac{1}{4} x^{-\frac{3}{4}}$
(b) $\frac{1}{4} x^{-\frac{1}{4}}$
(c) $-4 x^{-5}$
(d) $-4 x^{-3}$
2. The derivative of $\frac{1}{x^{5}}$ is
(a) $-\frac{5}{x^{4}}$
(b) $-\frac{5}{x^{6}}$
(c) $\frac{5}{x^{4}}$
(d) $\frac{1}{5 x^{4}}$
3. Find the gradient of the curve $y=\frac{2}{\sqrt{x}}$ at the point $(4,1)$.
4. Find the gradient of the curve $y=\frac{2}{x}-\frac{3}{x^{2}}$ at the point $\left(2, \frac{1}{4}\right)$.
5. What is the x-coordinate of the point on the curve $y=\frac{1}{x}-\frac{1}{x^{2}}$ where the gradient is 0 ?
6. What are the coordinates of the point on the curve $y=\sqrt{x}$ where the gradient is 2 ?
7. Find the equation of the tangent to the curve $y=2 x-\frac{1}{x}$ at the point where $x=1$.
8. Find the equation of the normal to the curve $y=2 x-\sqrt{x}$ at the point where $x=4$.
9. Find the coordinates of the stationary point of the curve $y=x^{2}-\frac{2}{x}$ and state whether it is a maximum or a minimum point.
10. Find the coordinates of the stationary point of the curve $y=x-4 \sqrt{x}$ and state whether it is a maximum or a minimum point.
