Section 3: Solving simultaneous differential equations

Section test

1. A polluted river flows into a lake, A, at the rate of $200 \mathrm{~km}^{3}$ per year. 20000 kg of chemical pollution enters the lake each year. Water flows out of lake A at the same rate and into a second lake, B. A second river of clean water also flows into lake B at a rate of $300 \mathrm{~km}^{3}$ per year. Water flows out of lake B at a rate of $500 \mathrm{~km}^{3}$ per year, so that the volume of water in each lake remains constant. Lake A has a volume of $4000 \mathrm{~km}^{3}$ and lake B has a volume of $2500 \mathrm{~km}^{3}$.
Initially both lakes contain no pollution.
Let x be the level of pollution in lake A , in $\mathrm{kg} / \mathrm{km}^{3}$.
Let y be the level of pollution in lake B, in $\mathrm{kg} / \mathrm{km}^{3}$.
Find expressions for $\frac{\mathrm{d} x}{\mathrm{~d} t}$ and $\frac{\mathrm{d} y}{\mathrm{~d} t}$ to model this situation.
2. A system of differential equations is given by

$$
\begin{aligned}
& \frac{\mathrm{d} x}{\mathrm{~d} t}=2 x-3 y-1 \\
& \frac{\mathrm{~d} y}{\mathrm{~d} t}=x+y-3
\end{aligned}
$$

The system can be reduced to the second order differential equation

$$
\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+a \frac{\mathrm{~d} x}{\mathrm{~d} t}+b x=c
$$

Find the values of a, b and c.
3. A system of differential equations is given by

$$
\begin{aligned}
& \frac{\mathrm{d} x}{\mathrm{~d} t}=-4 x+2 y+1 \\
& \frac{\mathrm{~d} y}{\mathrm{~d} t}=-3 x+y+2
\end{aligned}
$$

The system can be reduced to the second order differential equation

$$
\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+a \frac{\mathrm{~d} x}{\mathrm{~d} t}+b x=c
$$

Find the values of a, b and c.
What happens to the value of x as t becomes very large?
(a) It approaches zero without oscillating
(b) It approaches a fixed non-zero value without oscillating
(c) It oscillates towards zero
(c) It oscillates towards a fixed non-zero value
(d) It oscillates, with the oscillations becoming larger and larger
(e) It becomes numerically very large, without oscillating

Edexcel FM Second order DEs 3 section test solutions

4. A system of differential equations is given by

$$
\begin{aligned}
& \frac{\mathrm{d} x}{\mathrm{~d} t}=-x-y+1 \\
& \frac{\mathrm{~d} y}{\mathrm{~d} t}=2 x-3 y+3
\end{aligned}
$$

The system can be reduced to the second order differential equation

$$
\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+a \frac{\mathrm{~d} x}{\mathrm{~d} t}+b x=c .
$$

Find the values of a, b and c.
What happens to the value of x as t becomes very large?
(a) It approaches zero without oscillating
(b) It approaches a fixed non-zero value without oscillating
(c) It oscillates towards zero
(c) It oscillates towards a fixed non-zero value
(d) It oscillates, with the oscillations becoming larger and larger
(e) It becomes numerically very large, without oscillating
5. The system of differential equations

$$
\begin{aligned}
& \frac{\mathrm{d} x}{\mathrm{~d} t}=-3 x+2 y \\
& \frac{\mathrm{~d} y}{\mathrm{~d} t}=-2 x+y
\end{aligned}
$$

with initial conditions $x=1$ and $y=2$ when $t=0$
has the particular solution

$$
x=(a+b t) \mathrm{e}^{k t}, \quad y=(c+d) \mathrm{e}^{k t}
$$

Solve the system of equations to find the values of a, b, c, d and k.
6. The system of differential equations

$$
\begin{aligned}
& \frac{\mathrm{d} x}{\mathrm{~d} t}=x-y+3 \\
& \frac{\mathrm{~d} y}{\mathrm{~d} t}=5 x-y-1
\end{aligned}
$$

with initial conditions $x=0$ and $y=1$ when $t=0$
has the particular solution

$$
\begin{aligned}
& x=a+b \sin 2 t+c \cos 2 t \\
& y=p+q \sin 2 t+r \cos 2 t
\end{aligned}
$$

Solve the system of equations to find the values of a, b, c, p, q and r.

Edexcel FM Second order DEs 3 section test solutions

Section test solutions

Rate of input of pollution for $A=20000$.
Rate of output of pollution for $A=200 x$
Rate of change of pollution for A is $\frac{d x}{d t}=\frac{20000-200 x}{4000}$

$$
\frac{d x}{d t}=5-0.05 x
$$

Rate of input of pollution for $B=200 x$.
Rate of output of pollution for $B=500 y$
Rate of change of pollution for B is $\frac{d y}{d t}=\frac{200 x-500 y}{2500}$

$$
\frac{d y}{d t}=0.08 x-0.2 y
$$

2. $\frac{d x}{d t}=2 x-3 y-1 \Rightarrow y=\frac{1}{3}\left(2 x-1-\frac{d x}{d t}\right)$

$$
\frac{d y}{d t}=\frac{1}{3}\left(2 \frac{d x}{d t}-\frac{d^{2} x}{d t^{2}}\right)
$$

substituting for y and $\frac{d y}{d t}$ in $\frac{d y}{d t}=x+y-3$:

$$
\begin{aligned}
& \frac{1}{3}\left(2 \frac{d x}{d t}-\frac{d^{2} x}{d t^{2}}\right)=x+\frac{1}{3}\left(2 x-1-\frac{d x}{d t}\right)-3 \\
& y^{\prime \prime} \quad 2 \frac{d x}{d t}-\frac{d^{2} x}{d t^{2}}=3 x+2 x-1-\frac{d x}{d t}-9 \\
& \frac{d^{2} x}{d t^{2}}-3 \frac{d x}{d t}+5 x=10
\end{aligned}
$$

Edexcel FM Second order DEs 3 section test solutions
3. $\frac{d x}{d t}=-4 x+2 y+1 \Rightarrow y=\frac{1}{2}\left(\frac{d x}{d t}+4 x-1\right)$

$$
\frac{d y}{d t}=\frac{1}{2}\left(\frac{d^{2} x}{d t^{2}}+4 \frac{d x}{d t}\right)
$$

substituting for y and $\frac{d y}{d t}$ into $\frac{d y}{d t}=-3 x+y+2$:

$$
\begin{aligned}
& \frac{1}{2}\left(\frac{d^{2} x}{d t^{2}}+4 \frac{d x}{d t}\right)=-3 x+\frac{1}{2}\left(\frac{d x}{d t}+4 x-1\right)+2 \\
& \frac{d^{2} x}{d t^{2}}+4 \frac{d x}{d t}=-6 x+\frac{d x}{d t}+4 x-1+4 \\
& \frac{d^{2} x}{d t^{2}}+3 \frac{d x}{d t}+2 x=3
\end{aligned}
$$

Auxiliary equation is $\lambda^{2}+3 \lambda+2=0$

$$
\begin{aligned}
& (\lambda+1)(\lambda+2)=0 \\
& \lambda=-1 \text { or }-2
\end{aligned}
$$

complementary function is $x=A e^{-t}+B e^{-2 t}$
particular integral is $x=0$
Substituting into differential equation: $2 c=3 \Rightarrow c=\frac{3}{2}$
General solution is $x=A e^{-t}+B e^{-2 t}+\frac{3}{2}$.
As $t \rightarrow \infty, x \rightarrow \frac{3}{2}$, so x approaches a fixed value as $t \rightarrow \infty$, without oscillating
4. $\frac{d x}{d t}=-x-y+1 \Rightarrow y=-\frac{d x}{d t}-x+1$

$$
\frac{d y}{d t}=-\frac{d^{2} x}{d t^{2}}-\frac{d x}{d t}
$$

substituting for y and $\frac{d y}{d t}$ into $\frac{d y}{d t}=2 x-3 y+3$:

$$
\begin{aligned}
& -\frac{d^{2} x}{d t^{2}}-\frac{d x}{d t}=2 x-3\left(-\frac{d x}{d t}-x+1\right)+3 \\
& \frac{d^{2} x}{d t^{2}}+4 \frac{d x}{d t}+5 x=0
\end{aligned}
$$

Auxiliary equation is $\lambda^{2}+4 \lambda+5=0$

$$
\lambda=\frac{-4 \pm \sqrt{16-4 \times 1 \times 5}}{2}=\frac{-4 \pm 2 i}{2}=-2 \pm i
$$

General solution is $x=e^{-2 t}(A \sin t+B \cos t)$
As $t \rightarrow \infty, x$ oscíllates towards zero.

Edexcel FM Second order DEs 3 section test solutions
5. $\frac{d x}{d t}=-3 x+2 y \Rightarrow y=\frac{1}{2}\left(\frac{d x}{d t}+3 x\right)$

$$
\frac{d y}{d t}=\frac{1}{2}\left(\frac{d^{2} x}{d t^{2}}+3 \frac{d x}{d t}\right)
$$

substituting for y and $\frac{d y}{d t}$ in $\frac{d y}{d t}=-2 x+y$:

$$
\begin{aligned}
& \frac{1}{2}\left(\frac{d^{2} x}{d t^{2}}+3 \frac{d x}{d t}\right)=-2 x+\frac{1}{2}\left(\frac{d x}{d t}+3 x\right) \\
& \frac{d^{2} x}{d t^{2}}+3 \frac{d x}{d t}=-4 x+\frac{d x}{d t}+3 x \\
& \frac{d^{2} x}{d t^{2}}+2 \frac{d x}{d t}+x=0
\end{aligned}
$$

Auxiliary equation is $\lambda^{2}+2 \lambda+1=0$

$$
\begin{aligned}
& (\lambda+1)^{2}=0 \\
& \lambda=-1
\end{aligned}
$$

complementary function is $x=(A+B t) e^{-t}$
When $t=0, x=1 \Rightarrow 1=A$
$\frac{d x}{d t}=-(A+B t) e^{-t}+B e^{-t}$
When $t=0, x=1$ and $y=2 \Rightarrow \frac{d x}{d t}=-3+4=1$
$1=-A+B \Rightarrow B=2$
particular solution for x is $x=(1+2 t) e^{-t}$

$$
\begin{aligned}
\frac{d x}{d t} & =-(1+2 t) e^{-t}+2 e^{-t}=(1-2 t) e^{-t} \\
y & =\frac{1}{2}\left(\frac{d x}{d t}+3 x\right) \\
& =\frac{1}{2}\left((1-2 t) e^{-t}+3(1+2 t) e^{-t}\right) \\
& =\frac{1}{2}(4+4 t) e^{-t} \\
& =(2+2 t) e^{-t}
\end{aligned}
$$

6. $\frac{d x}{d t}=x-y+3 \Rightarrow y=x-\frac{d x}{d t}+3$

$$
\frac{d y}{d t}=\frac{d x}{d t}-\frac{d^{2} x}{d t^{2}}
$$

substituting for y and $\frac{d y}{d t}$ in $\frac{d y}{d t}=5 x-y-1$:

Edexcel FM Second order DEs 3 section test solutions

$$
\begin{aligned}
& \frac{d x}{d t}-\frac{d^{2} x}{d t^{2}}=5 x-\left(x-\frac{d x}{d t}+3\right)-1 \\
& \frac{d^{2} x}{d t^{2}}+4 x=4
\end{aligned}
$$

Auxiliary equation is $\lambda^{2}+4=0$

$$
\lambda= \pm 2 i
$$

complementary function is $x=A \sin 2 t+B \cos 2 t$
Particular integral is $x=0$
substituting into differential equation $\Rightarrow 40=4 \Rightarrow c=1$
General solution is $x=A \sin 2 t+B \cos 2 t+1$
When $t=0, x=0 \Rightarrow 0=B+1 \Rightarrow B=-1$
$\frac{d x}{d t}=2 A \cos 2 t-2 B \sin 2 t$
When $t=0, x=0$ and $y=1 \Rightarrow \frac{d x}{d t}=0-1+3=2$
$2=2 A \Rightarrow A=1$
Particular solution for x is $x=\sin 2 t-\cos 2 t+1$

$$
\begin{aligned}
\frac{d x}{d t} & =2 \cos 2 t+2 \sin 2 t \\
y & =x-\frac{d x}{d t}+3 \\
& =\sin 2 t-\cos 2 t+1-(2 \cos 2 t+2 \sin 2 t)+3 \\
& =-\sin 2 t-3 \cos 2 t+4
\end{aligned}
$$

