

# **Section 1: Homogeneous differential equations**

#### **Section test**

1. The general solution of the differential equation

$$\frac{d^2 y}{dx^2} + 2\frac{dy}{dx} - 3y = 0$$
  
is given by:  
(a)  $y = Ae^{-3x} + Be^x$  (b)  $y = Ae^{3x} + Be^{-x}$   
(c)  $y = A\cos 3x + B\sin x$  (d)  $y = A\cos x + B\sin 3x$ 

2. The general solution of the differential equation

$$\frac{d^{2}y}{dx^{2}} + 16y = 0$$
  
is given by:  
(a)  $y = (A + Bx)e^{4x}$  (b)  $y = A\cos 4x + B\sin 4x$   
(c)  $y = Ae^{4x} + Be^{-4x}$  (d)  $y = A + Be^{-4x}$ 

3. The general solution of the differential equation

$$\frac{d^2 y}{dx^2} + 6\frac{dy}{dx} + 9y = 0$$
  
is given by:  
(a)  $y = A\cos 3x + B\sin 3x$  (b)  $y = (A + Bx)e^{3x}$   
(c)  $y = Ae^{3x} + Be^{-3x}$  (d)  $y = (A + Bx)e^{-3x}$ 

4. Find the general solution of the differential equation  $\frac{d^2 y}{dx^2} - 2\frac{dy}{dx} + 2y = 0$ .

5. Find the particular solution of the differential equation

$$\frac{d^2 y}{dx^2} + 6\frac{dy}{dx} + 13y = 0$$
  
for which  $y = 0$  and  $\frac{dy}{dx} = 4$  when  $x = 0$ .

6. Find the particular solution of the differential equation

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 2\frac{\mathrm{d}x}{\mathrm{d}t} + x = 0$$

given the conditions x = 2 when t = 0 and x = 0 when t = 2.

7. Find the particular solution of the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 3\frac{\mathrm{d}y}{\mathrm{d}x} + 2y = 0$$

given the initial conditions y = 0 and  $\frac{dy}{dx} = 2$  when x = 0.



## **Edexcel FM Second order DEs 1 section test solutions**

8. The movement of a particle is modelled by the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} = -4 y$$

The period of the motion is

(a) 
$$\pi$$
 (b)  $\frac{\pi}{2}$   
(c)  $\frac{1}{\pi}$  (d)  $\frac{2}{\pi}$ 

9. The differential equation

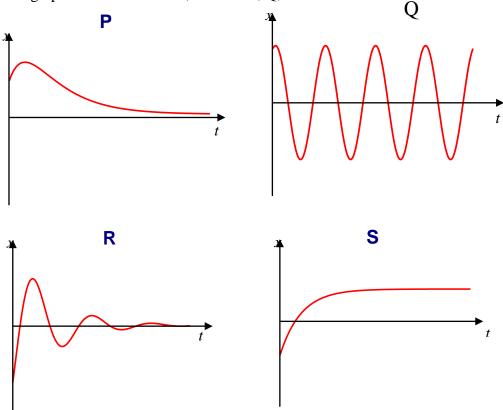
$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 3\frac{\mathrm{d}x}{\mathrm{d}t} + 4x = 0$$

represents motion which exhibits

- (a) critical damping (b) overdamping
- (c) underdamping

(d) no damping

10. Four graphs are shown below, labelled P, Q, R and S.



Each graph shows a particular solution to one of the following differential equations. Match the differential equation to the graph.

$$4\frac{d^{2}x}{dt^{2}} + 4\frac{dx}{dt} + 17x = 0 \qquad \qquad \frac{d^{2}x}{dt^{2}} + 3\frac{dx}{dt} = 0$$
$$\frac{d^{2}x}{dt^{2}} + 4x = 0 \qquad \qquad \frac{d^{2}x}{dt^{2}} + 3\frac{dx}{dt} + 2x = 0$$

#### Solutions to section test

- 1.  $\frac{d^2 y}{dx^2} + 2 \frac{dy}{dx} 3y = 0$ The auxiliary equation is  $m^2 + 2m - 3 = 0$ (m+3)(m-1) = 0m = -3 or m = 1The general solution is  $y = Ae^{-3x} + Be^{x}$
- 2.  $\frac{d^2 y}{dx^2} + 16y = 0$ The auxiliary equation is  $m^2 + 16 = 0$  $m = \pm 4i$ The general solution is  $y = A\cos 4x + B\sin 4x$
- 3.  $\frac{d^2y}{dx^2} + 6\frac{dy}{dx} + 9y = 0$

The auxiliary equation is  $m^2 + 6m + 9 = 0$ 

 $(m+3)^2 = 0$ 

m = -3The general solution is  $y = (A + Bx)e^{-3x}$ 

 $4. \quad \frac{d^2 y}{dx^2} - 2\frac{dy}{dx} + 2y = 0$ 

The auxiliary equation is  $m^2 - 2m + 2 = 0$ 

$$m = \frac{2 \pm \sqrt{4 - 4 \times 1 \times 2}}{2} = \frac{2 \pm \sqrt{-4}}{2} = \frac{2 \pm 2i}{2}$$

 $m = 1 \pm i$ The general solution is  $y = e^{x} (A \cos x + B \sin x)$ 

5. The auxiliary equation is  $\lambda^2 + 6\lambda + 13 = 0$ 

$$\lambda = \frac{-6 \pm \sqrt{36 - 4 \times 1 \times 13}}{2} = \frac{-6 \pm \sqrt{-16}}{2} = \frac{-6 \pm 4i}{2}$$
$$\lambda = -3 \pm 2i$$

General solution is  $y = e^{-3x} (A \sin 2x + B \cos 2x)$ 

When x = 0,  $y = 0 \implies 0 = B$ 

## **Edexcel FM Second order DEs 1 section test solutions**

$$y = Ae^{-3x} \sin 2x$$

$$\frac{dy}{dx} = -3Ae^{-3x} \sin 2x + 2Ae^{-3x} \cos 2x$$
when  $x = 0$ ,  $\frac{dy}{dx} = 4 \implies 4 = 2A \implies A = 2$ 
Particular solution is  $y = 2e^{-3x} \sin 2x$ 

6. The auxiliary equation is  $\lambda^2 + 2\lambda + 1 = 0$ 

 $(\lambda + 1)^2 = 0$   $\lambda = -1$ Repeated root, so general solution is  $x = (A + Bt)e^{-t}$ When  $t = 0, x = 2 \Longrightarrow 2 = A$ When  $t = 2, x = 0 \Longrightarrow 0 = (2 + 2B)e^{-2} \Longrightarrow B = -1$ Particular solution is  $x = (2 - t)e^{-t}$ 

7. The auxiliary equation is  $\lambda^2 + 3\lambda + 2 = 0$   $(\lambda + 1) (\lambda + 2) = 0$   $\lambda = -1 \text{ or } -2$ The general solution is  $y = Ae^{-x} + Be^{-2x}$ 

When 
$$x = 0$$
,  $y = 0 \Rightarrow 0 = A + B$  (1)  

$$\frac{dy}{dx} = -Ae^{-x} - 2Be^{-2x}$$
When  $x = 0$ ,  $\frac{dy}{dx} = 2 \Rightarrow 2 = -A - 2B$  (2)  
(1) + (2):  $2 = -B \Rightarrow B = -2$ ,  $A = 2$   
Particular solution is  $y = 2e^{-x} - 2e^{-2x}$ .

8. The differential equation can be written as  $\frac{d^2y}{dt^2} + 4y = 0$ . Comparing with the SHM

equation 
$$\frac{d^2 x}{dt^2} + \omega^2 x = 0$$
 gives  $\omega = 2$ .  
The period  $= \frac{2\pi}{\omega} = \frac{2\pi}{2} = \pi$ .

9.  $\frac{d^2x}{dt^2} + 3\frac{dx}{dt} + 4x = 0$  models damped harmonic motion, with  $\alpha = 3$  and  $\omega^2 = 4$ .  $\alpha^2 - 4\omega^2 = 9 - 16 < 0$ 

so the motion exhibits underdamping.

10. 
$$4\frac{d^{2}x}{dt^{2}} + 4\frac{dx}{dt} + 1 \neq x = 0$$
  
The auxiliary equation is  $4\lambda^{2} + 4\lambda + 1 \neq = 0$   

$$\lambda = \frac{-4 \pm \sqrt{16 - 4 \times 4 \times 17}}{2 \times 4} = \frac{-4 \pm \sqrt{-256}}{8} = \frac{-4 \pm 166}{8}$$

General solution is  $x = e^{-\frac{1}{2}t} (A \sin 2t + B \cos 2t)$ The solution is oscillatory and decaying to zero. This is graph R.

 $\frac{d^2 x}{dt^2} + 3\frac{dx}{dt} = 0$ The auxiliary equation is  $\lambda^2 + 3\lambda = 0$ 

$$\lambda(\lambda + 3) = 0$$
  
 $\lambda = 0 \text{ or } -3$ 

General solution is  $\chi = A + Be^{-3t}$ 

This solution does not oscillate, and it approaches A as t tends to infinity. This is graph S (the value of B appears to be negative for this particular solution)

$$\frac{d^2 x}{dt^2} + 4 x = 0$$

The auxiliary equation is  $\lambda^2 + 4 = 0$ 

$$\label{eq:lambda} \begin{split} \lambda &= \pm 2i \\ \text{General solution is } \mathcal{Y} &= \mathcal{A}\sin 2x + \mathcal{B}\cos 2x \\ \text{The solution oscillates, with constant amplitude.} \\ \text{This is graph } \mathcal{Q}. \end{split}$$

 $\frac{d^{2}x}{dt^{2}} + 3\frac{dx}{dt} + 2x = 0$ The auxiliary equation is  $\lambda^{2} + 3\lambda + 2 = 0$ 

$$(\lambda + 2) (\lambda + 1) = 0$$

$$\lambda = -2 \text{ or } -1$$

General solution is  $y = Ae^{-2x} + Be^{-x}$ 

The solution does not oscillate, and decays to zero as t tends to infinity. This is graph P.