Edexcel Further Maths Second order DEs

Section 1: Homogeneous differential equations

Section test

1. The general solution of the differential equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} x}-3 y=0
$$

is given by:
(a) $y=A \mathrm{e}^{-3 x}+B \mathrm{e}^{x}$
(b) $y=A \mathrm{e}^{3 x}+B \mathrm{e}^{-x}$
(c) $y=A \cos 3 x+B \sin x$
(d) $y=A \cos x+B \sin 3 x$
2. The general solution of the differential equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+16 y=0
$$

is given by:
(a) $y=(A+B x) \mathrm{e}^{4 x}$
(b) $y=A \cos 4 x+B \sin 4 x$
(c) $y=A \mathrm{e}^{4 x}+B \mathrm{e}^{-4 x}$
(d) $y=A+B \mathrm{e}^{-4 x}$
3. The general solution of the differential equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+6 \frac{\mathrm{~d} y}{\mathrm{~d} x}+9 y=0
$$

is given by:
(a) $y=A \cos 3 x+B \sin 3 x$
(b) $y=(A+B x) \mathrm{e}^{3 x}$
(c) $y=A \mathrm{e}^{3 x}+B \mathrm{e}^{-3 x}$
(d) $y=(A+B x) \mathrm{e}^{-3 x}$
4. Find the general solution of the differential equation $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-2 \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y=0$.
5. Find the particular solution of the differential equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+6 \frac{\mathrm{~d} y}{\mathrm{~d} x}+13 y=0
$$

for which $y=0$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=4$ when $x=0$.
6. Find the particular solution of the differential equation

$$
\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+2 \frac{\mathrm{~d} x}{\mathrm{~d} t}+x=0
$$

given the conditions $x=2$ when $t=0$ and $x=0$ when $t=2$.
7. Find the particular solution of the differential equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+3 \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y=0
$$

given the initial conditions $y=0$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=2$ when $x=0$.

Edexcel FM Second order DEs 1 section test solutions

8. The movement of a particle is modelled by the differential equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}=-4 y
$$

The period of the motion is
(a) π
(b) $\frac{\pi}{2}$
(c) $\frac{1}{\pi}$
(d) $\frac{2}{\pi}$
9. The differential equation

$$
\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+3 \frac{\mathrm{~d} x}{\mathrm{~d} t}+4 x=0
$$

represents motion which exhibits
(a) critical damping
(b) overdamping
(c) underdamping
(d) no damping
10. Four graphs are shown below, labelled $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S .

Each graph shows a particular solution to one of the following differential equations.
Match the differential equation to the graph.
$4 \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}+4 \frac{\mathrm{~d} x}{\mathrm{~d} t}+17 x=0$

$$
\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+4 x=0
$$

$$
\begin{aligned}
& \frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+3 \frac{\mathrm{~d} x}{\mathrm{~d} t}=0 \\
& \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}+3 \frac{\mathrm{~d} x}{\mathrm{~d} t}+2 x=0
\end{aligned}
$$

Edexcel FM Second order DEs 1 section test solutions

Solutions to section test

1. $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}-3 y=0$

The auxiliary equation is $m^{2}+2 m-3=0$

$$
\begin{aligned}
& (m+3)(m-1)=0 \\
& m=-3 \text { or } m=1
\end{aligned}
$$

The general solution is $y=A e^{-3 x}+B e^{x}$
2. $\frac{d^{2} y}{d x^{2}}+16 y=0$

The auxiliary equation is $m^{2}+16=0$

$$
m= \pm 4 i
$$

The general solution is $y=A \cos 4 x+B \sin 4 x$
3. $\frac{d^{2} y}{d x^{2}}+6 \frac{d y}{d x}+9 y=0$

The auxiliary equation is $m^{2}+6 m+9=0$

$$
\begin{aligned}
& (m+3)^{2}=0 \\
& m=-3
\end{aligned}
$$

The general solution is $y=(A+B x) e^{-3 x}$
4. $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+2 y=0$

The auxiliary equation is $m^{2}-2 m+2=0$

$$
\begin{aligned}
& m=\frac{2 \pm \sqrt{4-4 \times 1 \times 2}}{2}=\frac{2 \pm \sqrt{-4}}{2}=\frac{2 \pm 2 i}{2} \\
& m=1 \pm i
\end{aligned}
$$

The general solution is $y=e^{x}(A \cos x+B \sin x)$
5. The auxiliary equation is $\lambda^{2}+6 \lambda+13=0$

$$
\begin{aligned}
& \lambda=\frac{-6 \pm \sqrt{36-4 \times 1 \times 13}}{2}=\frac{-6 \pm \sqrt{-16}}{2}=\frac{-6 \pm 4 i}{2} \\
& \lambda=-3 \pm 2 i
\end{aligned}
$$

General solution is $y=e^{-3 x}(A \sin 2 x+B \cos 2 x)$

When $x=0, y=0 \Rightarrow 0=B$

Edexcel FM Second order DEs 1 section test solutions
$y=A e^{-3 x} \sin 2 x$
$\frac{d y}{d x}=-3 A e^{-3 x} \sin 2 x+2 A e^{-3 x} \cos 2 x$
When $x=0, \frac{d y}{d x}=4 \Rightarrow 4=2 A \Rightarrow A=2$
Particular solution is $y=2 e^{-3 x} \sin 2 x$
6. The auxiliary equation is $\lambda^{2}+2 \lambda+1=0$

$$
\begin{aligned}
& (\lambda+1)^{2}=0 \\
& \lambda=-1
\end{aligned}
$$

Repeated root, so general solution is $x=(A+B t) e^{-t}$
When $t=0, x=2 \Rightarrow 2=A$
Whent $=2, x=0 \Rightarrow 0=(2+2 B) e^{-2} \Rightarrow B=-1$
particular solution is $x=(2-t) e^{-t}$
7. The auxiliary equation is $\lambda^{2}+3 \lambda+2=0$

$$
\begin{aligned}
& (\lambda+1)(\lambda+2)=0 \\
& \lambda=-1 \text { or }-2
\end{aligned}
$$

The general solution is $y=A e^{-x}+B e^{-2 x}$
When $x=0, y=0 \Rightarrow 0=A+B$ (1)
$\frac{d y}{d x}=-A e^{-x}-2 B e^{-2 x}$
When $x=0, \frac{d y}{d x}=2 \Rightarrow 2=-A-2 B$ (2)
(1) $+(2): 2=-B \Rightarrow B=-2, A=2$
particular solution is $y=2 e^{-x}-2 e^{-2 x}$.
8. The differential equation can be written as $\frac{d^{2} y}{d t^{2}}+4 y=0$. comparing with the SHM equation $\frac{d^{2} x}{d t^{2}}+\omega^{2} x=0$ gives $\omega=2$.
The period $=\frac{2 \pi}{\omega}=\frac{2 \pi}{2}=\pi$.
9. $\frac{d^{2} x}{d t^{2}}+3 \frac{d x}{d t}+4 x=0$ models damped harmonic motion, with $\alpha=3$ and $\omega^{2}=4$.
$\alpha^{2}-4 \omega^{2}=9-16<0$
so the motion exhibits underdamping.

Edexcel FM Second order DEs 1 section test solutions

10. $4 \frac{d^{2} x}{d t^{2}}+4 \frac{d x}{d t}+17 x=0$

The auxiliary equation is $4 \lambda^{2}+4 \lambda+17=0$

$$
\begin{aligned}
& \qquad \lambda=\frac{-4 \pm \sqrt{16-4 \times 4 \times 17}}{2 \times 4}=\frac{-4 \pm \sqrt{-256}}{8}=\frac{-4 \pm 16 i}{8} \\
& \qquad \lambda=-\frac{1}{2} \pm 2 i \\
& \text { General solution is } x=e^{-\frac{1}{2} t}(A \sin 2 t+B \cos 2 t) \\
& \text { The solution is oscillatory and decaying to zero. } \\
& \text { This is graph } R \text {. }
\end{aligned}
$$

$\frac{d^{2} x}{d t^{2}}+3 \frac{d x}{d t}=0$
The auxiliary equation is $\lambda^{2}+3 \lambda=0$

$$
\begin{aligned}
& \lambda(\lambda+3)=0 \\
& \lambda=0 \text { or }-3
\end{aligned}
$$

General solution is $x=A+B e^{-3 t}$
This solution does not oscillate, and it approaches A as t tends to infinity.
This is graph S (the value of B appears to be negative for this particular solution)
$\frac{d^{2} x}{d t^{2}}+4 x=0$
The auxiliary equation is $\lambda^{2}+4=0$

$$
\lambda= \pm 2 i
$$

General solution is $y=A \sin 2 x+B \cos 2 x$
The solution oscillates, with constant amplitude.
This is graph Q.
$\frac{d^{2} x}{d t^{2}}+3 \frac{d x}{d t}+2 x=0$
The auxiliary equation is $\lambda^{2}+3 \lambda+2=0$

$$
\begin{aligned}
& (\lambda+2)(\lambda+1)=0 \\
& \lambda=-2 \text { or }-1
\end{aligned}
$$

General solution is $y=A e^{-2 x}+B e^{-x}$
The solution does not oscillate, and decays to zero as t tends to infinity.
This is graph P.

