

Section 3: Solving simultaneous differential equations

Crucial points

1. Check working carefully

Look out in particular for errors in eliminating one variable to find a second order differential equation, and in using the solution for one variable to find the solution to the other variable.

Check your solution with the original differential equations.

Learn a standard pattern of elimination
 If you don't approach this in an organised way, you can end up going round in circles! See the Notes and Examples for a summary of two possible approaches. You will probably find it easiest to choose one of these and then use it consistently.

3. Use the correct variables

Remember that when you differentiate the original equations, you are

differentiating with respect to t, so differentiating y gives $\frac{dy}{dt}$.

4. Use the solution for one variable to find the solution for the other variable

For example, if you have found a solution for *x*, find $\frac{dx}{dt}$ and substitute into the

original equation for $\frac{dx}{dt}$ (if you try to use the other equation you will end up with more work!). If you are working with general solutions, then this means that the solution for *y* will be expressed in terms of the unknown constants that you used for *x*, so that you have just two unknown constants altogether. If you start again by eliminating *x* from the original equations, not only will you give yourself a lot more work, but you will also introduce two new unknown constants.

5. **Be careful when finding the values of the unknown constants** Check your solution with the initial conditions.

