## Edexcel Further Maths Second order DEs

## Section 2: Non-homogeneous differential equations

## Notes and Examples

These notes contain subsections on

- The complementary function and particular integral
- Finding particular integrals
- Finding general and particular solutions


## The complementary function and particular integral

So far, all the second order differential equations you have met have been of the form

$$
a \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+b \frac{\mathrm{~d} y}{\mathrm{~d} x}+c y=0 .
$$

These are called homogeneous differential equations.
You will now look at differential equations of the form

$$
a \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+b \frac{\mathrm{~d} y}{\mathrm{~d} x}+c y=\mathrm{f}(x) .
$$

These are called non-homogeneous differential equations. You will be looking at equations where $\mathrm{f}(x)$ is a simple polynomial, exponential or trigonometric function.

To solve a non-homogeneous differential equation, you start by finding the general solution to the associated homogeneous differential equation, in the same way that you did in section 1 . This is called the complementary function.

You then need to find a function which satisfies the full differential equation. This is called the particular integral and it is added to the complementary function to form the general solution to the non-homogeneous equation.

The form of the particular solution is related to the form of the function $\mathrm{f}(x)$. By expressing it in terms of one or more unknown constants, and substituting it into the differential equation, you can find the unknown constants.

## Finding particular integrals

The table below illustrates all the forms of particular integrals that you could meet.

| Function $\mathbf{f}(\boldsymbol{x})$ | Particular integral |
| :--- | :--- |
| Constant term | $c$ |
| Linear function | $a x+b$ |
| Quadratic function | $a x^{2}+b x+c$ |
| Exponential function involving $\mathrm{e}^{p x}$ | $\mathrm{k}^{p x}$ |
| Function involving sin $p x$ and $/$ or $\cos p x$ | $a \cos p x+b \sin p x$ |

## Edexcel FM Second order DEs 2 Notes \& Examples

Here is an example, illustrating an important point about the form of the particular integral.

## Example 1

Find a particular integral of the differential equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-\frac{\mathrm{d} y}{\mathrm{~d} x}-2 y=x^{2}
$$

## Solution

Since the function on the right-hand side is quadratic, use the trial function

$$
\begin{aligned}
& y=a x^{2}+b x+c \\
& \frac{\mathrm{~d} y}{\mathrm{~d} x}=2 a x+b \\
& \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=2 a
\end{aligned}
$$



Equating coefficients of $x^{2}: \quad-2 a=1 \Rightarrow a=-\frac{1}{2}$
Equating coefficients of $x: \quad-2 a-2 b=0 \Rightarrow b=-a=\frac{1}{2}$
Equating constant terms: $\quad 2 a-b-2 c=0 \Rightarrow c=\frac{1}{2}(2 a-b)=-\frac{3}{4}$
The particular integral is $y=-\frac{1}{2} x^{2}+\frac{1}{2} x-\frac{3}{4}$

A similar situation may arise when the particular integral involves trig functions. If the right-hand side of the differential equation is $\cos 2 x$, but the particular integral must also involve $\sin 2 x$, as this will appear when differentiating.

If the form which you would expect the particular integral to take is the same as part of the complementary function, this is a problem, since this means that any particular integral satisfies the homogeneous equation and therefore does not satisfy the whole equation.

For example, you would expect the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}-4 \frac{\mathrm{~d} y}{\mathrm{~d} x}+4=\mathrm{e}^{2 x}$ to have a particular integral of the form $a \mathrm{e}^{2 x}$, but this will not work since it satisfies the equation $\frac{\mathrm{d} y}{\mathrm{~d} x}-4 \frac{\mathrm{~d} y}{\mathrm{~d} x}+4=0$,. In such cases, a particular integral of the form $a x \mathrm{e}^{2 x}$ is usually used. However, in this case, this form is also the same as part of the complementary

## Edexcel FM Second order DEs 2 Notes \& Examples

function (since the auxiliary equation has a repeated root) so instead a particular integral of the form $a x^{2} \mathrm{e}^{2 x}$ is used.

This situation can also arise with trig functions, as shown in the example below.

## Example 2

Find the general solution of the differential equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+4 y=\cos 2 x+\sin 2 x
$$

## Solution

The auxiliary equation is $m^{2}+4=0$

$$
m= \pm 2 \mathrm{i}
$$

Complementary function is $y=A \cos 2 x+B \sin 2 x$
The particular integral is of the form $y=x(a \cos 2 x+b \sin 2 x)$


$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =a \cos 2 x+b \sin 2 x+x(-2 a \sin 2 x+2 b \cos 2 x) \\
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}} & =-2 a \sin 2 x+2 b \cos 2 x+(-2 a \sin 2 x+2 b \cos 2 x)+x(-4 a \cos 2 x-4 b \sin 2 x) \\
& =-4 a \sin 2 x+4 b \cos 2 x-4 x(a \cos 2 x+b \sin 2 x)
\end{aligned}
$$

Substituting into the differential equation:
$-4 a \sin 2 x+4 b \cos 2 x-4 x(a \cos 2 x+b \sin 2 x)+4 x(a \cos 2 x+b \sin 2 x)=\cos 2 x+\sin 2 x$
$-4 a \sin 2 x+4 b \cos 2 x=\cos 2 x+\sin 2 x$
Equating coefficients of $\sin x$ : $-4 a=1 \Rightarrow a=-\frac{1}{4}$
Equating coefficients of $\cos x: 4 b=1 \Rightarrow b=\frac{1}{4}$
Particular integral is $y=x\left(\frac{1}{4} \sin 2 x-\frac{1}{4} \cos 2 x\right)$
General solution is $y=A \cos 2 x+B \sin 2 x+x\left(\frac{1}{4} \sin 2 x-\frac{1}{4} \cos 2 x\right)$.

## Finding general and particular solutions

Solving a differential equation of the form $a \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+b \frac{\mathrm{~d} y}{\mathrm{~d} x}+c y=\mathrm{f}(x)$ is quite a lengthy process. However, although it is easy to make careless errors, the steps involved are all quite straightforward.

Here is a summary of the process.

- Write down and solve the quadratic auxiliary equation.
- Use the solutions of the auxiliary equation to write down the complementary function in the appropriate form, with unknown constants $A$ and $B$.
- Look at the function $\mathrm{f}(x)$ on the right-hand side of the differential equation. Check whether it is of the same form as any part of the complementary


## Edexcel FM Second order DEs 2 Notes \& Examples

function, and then write down the appropriate form of the particular integral, which will involve one, two or three unknown constants.

- Differentiate the particular integral twice, and substitute into the original differential equation. Then equate coefficients to find the values of the unknown constants in the particular integral.
- Write down the general solution of the differential equation by adding the particular integral to the complementary function.
- If a particular solution is required, substitute the given conditions to find the values of the unknown constants $A$ and $B$. (This may involve solving a pair of simultaneous equations).

Here is a further example.

## Example 3

Find the particular solution of the differential equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} x}+y=\sin x
$$

in the case where $y=0$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ when $x=0$.

## Solution

The auxiliary equation is:

$$
\begin{aligned}
& m^{2}+2 m+1=0 \\
& (m+1)^{2}=0 \\
& m=-1
\end{aligned}
$$

The complementary function is:

$$
y=(A+B x) \mathrm{e}^{-x}
$$

The particular integral is $y=a \sin x+b \cos x$

$$
\begin{aligned}
& \frac{\mathrm{d} y}{\mathrm{~d} x}=a \cos x-b \sin x \\
& \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=-a \sin x-b \cos x
\end{aligned}
$$

Substituting into the differential equation:
$-a \sin x-b \cos x+2(a \cos x-b \sin x)+a \sin x+b \cos x=\sin x$
$(-a-2 b+a) \sin x+(-b+2 a+b) \cos x=\sin x$
$-2 b \sin x+2 a \cos x=\sin x$
Equating coefficients of $\cos x: a=0$
Equating coefficients of $\sin x: b=-\frac{1}{2}$
The particular integral is $y=-\frac{1}{2} \cos x$
The general solution is:

$$
y=(A+B x) \mathrm{e}^{-x}-\frac{1}{2} \cos x
$$

## Edexcel FM Second order DEs 2 Notes \& Examples

$$
\begin{aligned}
& \text { When } x=0, y=0 \Rightarrow 0=A-\frac{1}{2} \Rightarrow A=\frac{1}{2} \\
& \frac{\mathrm{~d} y}{\mathrm{~d} x}=B \mathrm{e}^{-x}-(A+B x) \mathrm{e}^{-x}+\frac{1}{2} \sin x \\
& \text { When } x=0, \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \Rightarrow 0=B-A \Rightarrow B=\frac{1}{2}
\end{aligned}
$$

The particular solution is $y=\frac{1}{2}(1+x) \mathrm{e}^{-x}-\frac{1}{2} \cos x$

