

Section 2: The area of a sector

Exercise level 2

- 1. (i) Sketch the curve $r = 3 + 2\cos\theta$.
 - (ii) Find the area enclosed by the curve.
 - (iii) Find the equations of the tangents parallel to and perpendicular to the initial line. Give answers to three decimal places where necessary.
- 2. (i) Sketch the curve r cos θ = a, where a > 0, and give its Cartesian equation.
 (ii) If A is the area between the curve, the initial line, and θ = α, where 0 < α < π/2, then find A:
 - (a) by using the formula $\frac{1}{2}ab\sin C$ for the area of a triangle
 - (b) by using $A = \int \frac{1}{2} r^2 d\theta$ with appropriate limits.
- 3. Suppose $r = \sin \theta \cot \theta$
 - (i) By considering $\frac{dr}{d\theta}$, show that *r* is positive and is increasing over the values $1 \le \theta \le \frac{\pi}{2}$.
 - (ii) Find the exact area bounded by the curve and the rays $\theta = \frac{\pi}{3}$ and $\theta = \frac{\pi}{2}$.
- 4. (i) Sketch the curve r = cos 3θ for 0 ≤ θ < 2π.
 (ii) The curve r = cos(3θ + a), where a > 0, has the initial line as a line of symmetry. What is the smallest possible value for a?
 (iii) Shetch this curve
 - (iii)Sketch this curve.(iv)Find the total area enclosed by the curve.
 - .
- 5. (i) Find $\int \csc x \, dx$ by using the substitution $u = \cos x$.
 - (ii) For the curve $r = 1 + \frac{1}{\sin \theta}$, find the area between the curve and the rays $\theta = \frac{\pi}{3}$ and $\theta = \frac{\pi}{2}$.
- 6. Sketch the curve $r = \frac{a}{\theta}$ for $\frac{\pi}{2} \le \theta \le 2\pi$. The area enclosed by this curve in quadrants 2, 3 and 4 is 1. Find the value of *a*.

