Edexcel Further Maths Polar coordinates

Section 1: Polar coordinates and curves

Section test

1. The point P has Cartesian coordinates $(-5,2)$. Find the polar coordinates of P , giving each one to $3 \mathrm{~d} . \mathrm{p}$. where appropriate.
2. The point Q has polar coordinates $\left(3,-\frac{5 \pi}{6}\right)$. Find the Cartesian coordinates of Q , giving each one to $3 \mathrm{~d} . \mathrm{p}$. where appropriate.
3. Plot the points with polar coordinates $\left(3, \frac{\pi}{6}\right),\left(2, \frac{3 \pi}{4}\right),\left(3,-\frac{5 \pi}{6}\right)$ and $\left(2,-\frac{\pi}{4}\right)$. The shape they form is a
(a) rhombus
(b) rectangle
(c) parallelogram
(d) kite
4. A curve has polar equation $2 r^{2} \sin \theta \cos \theta=1$. The Cartesian equation of the curve is
(a) $2\left(x^{2}+y^{2}\right) y=1$
(b) $x y=2$
(c) $2 x y=1$
(d) $x^{2}+y^{2}=y$
5. A curve has Cartesian equation $x^{2}+y^{2}=2 x$. The polar equation of the curve is
(a) $r=2 \cos \theta$
(b) $r^{2}=2 \cos \theta$
(c) $r=2 \sin \theta$
(d) $r^{2}=2 \sin \theta$
6. The graphs shown below are not to scale.

Edexcel FM Polar coordinates 1 section test solutions

R

S

Which diagram shows the graph of the curve $r=1+\cos \theta$?
Which diagram shows the graph of the curve $r=\sin 3 \theta$?
Which diagram shows the graph of the curve $r=3+2 \cos \theta$?
Which diagram shows the graph of the curve $r=\cos 3 \theta$?
7. The centre of a circle has polar coordinates $\left(2, \frac{\pi}{4}\right)$. The radius of the circle is 2 . The polar equation of the circle is
(a) $r=4 \sin \theta$
(b) $r=4 \sin \left(\theta-\frac{\pi}{4}\right)$
(c) $r=4 \cos \theta$
(d) $r=4 \cos \left(\theta-\frac{\pi}{4}\right)$

Edexcel FM Polar coordinates 1 section test solutions

Section test solutions

1. $r^{2}=x^{2}+y^{2}=25+4=29$
$r=\sqrt{29}=5.385$
$\tan \theta=\frac{y}{x}=-\frac{2}{5} \Rightarrow \theta=-0.381$ or 2.761
Since P is in the second quadrant, the polar coordinates of P are (5.385,
2.761).
2. $x=r \cos \theta=3 \cos \left(-\frac{5 \pi}{6}\right)=3 \times-\frac{\sqrt{3}}{2}=-2.598$
$y=r \sin \theta=3 \sin \left(-\frac{5 \pi}{6}\right)=3 \times-\frac{1}{2}=-1.5$
The cartesian coordinates of Q are $(-2.598,-1.5)$.
3.

By symmetry, the shape has two sets of parallel sides so it is a parallelogram. However, the two sets of sides are not equal in length, so it is not a rhombus, and the diagonals are not equal in length, so it is not a rectangle.
4. $2 r^{2} \sin \theta \cos \theta=1$
$2(r \cos \theta)(r \sin \theta)=1$
$2 x y=1$
5. $x^{2}+y^{2}=2 x$
$r^{2}=2 r \cos \theta$
$r=2 \cos \theta$

Edexcel FM Polar coordinates 1 section test solutions

6. $r=1+\cos \theta$

When $\theta=0, r=2$. The value of r decreases until it reaches zero at $\theta=\pi$. since $\cos (-\theta)=\cos \theta$, the graph is symmetrical about the initial line. This is graph Q.
$r=\sin 3 \theta$
The graph is at its maximum value of 1 when $\theta=\frac{\pi}{6}, \frac{5 \pi}{6}$ and $-\frac{\pi}{2}$.
This is graph s.
$r=3+2 \cos \theta$
When $\theta=0, r=5$. The value of r decreases until it reaches 1 at $\theta=\pi$.
since $\cos (-\theta)=\cos \theta$, the graph is symmetrical about the initial line.
This is graph P.
$r=\cos 3 \theta$
The graph is at its maximum value of 1 when $\theta=0, \frac{2 \pi}{3}$ and $-\frac{2 \pi}{3}$. This is graph R.
7. From the diagram, $\frac{1}{2} r=2 \cos \left(\theta-\frac{\pi}{4}\right)$

$$
r=4 \cos \left(\theta-\frac{\pi}{4}\right)
$$

Alternative method:

cartesian equation of circle is $\left(x-2 \cos \frac{\pi}{4}\right)^{2}+\left(y-2 \sin \frac{\pi}{4}\right)^{2}=4$

$$
\begin{aligned}
& x^{2}-4 x \cos \frac{\pi}{4}+4 \cos ^{2} \frac{\pi}{4}+y^{2}-4 y \sin \frac{\pi}{4}+4 \sin ^{2} \frac{\pi}{4}=4 \\
& x^{2}+y^{2}-4 x \cos \frac{\pi}{4}-4 y \sin \frac{\pi}{4}=4-4 \cos ^{2} \frac{\pi}{4}-4 \sin ^{2} \frac{\pi}{4} \\
& r^{2}-4 r \cos \theta \cos \frac{\pi}{4}-4 r \sin \theta \sin \frac{\pi}{4}=4-2-2 \\
& r^{2}-4 r\left(\cos \theta \cos \frac{\pi}{4}+\sin \theta \sin \frac{\pi}{4}\right)=0 \\
& r-4 \cos \left(\theta-\frac{\pi}{4}\right)=0 \\
& r=4 \cos \left(\theta-\frac{\pi}{4}\right)
\end{aligned}
$$

