

Section 1: Polar coordinates and curves

Section test

- 1. The point P has Cartesian coordinates (-5, 2). Find the polar coordinates of P, giving each one to 3 d.p. where appropriate.
- 2. The point Q has polar coordinates $\left(3, -\frac{5\pi}{6}\right)$. Find the Cartesian coordinates of Q, giving each one to 3 d.p. where appropriate.
- 3. Plot the points with polar coordinates $\left(3, \frac{\pi}{6}\right), \left(2, \frac{3\pi}{4}\right), \left(3, -\frac{5\pi}{6}\right)$ and $\left(2, -\frac{\pi}{4}\right)$. The shape they form is a (a) rhombus (b) rectangle (d) kite
- (c) parallelogram
- 4. A curve has polar equation $2r^2 \sin \theta \cos \theta = 1$. The Cartesian equation of the curve is
- (b) xy = 2(a) $2(x^2 + y^2)y = 1$ (c) 2xy = 1(d) $x^2 + y^2 = y$
- 5. A curve has Cartesian equation $x^2 + y^2 = 2x$. The polar equation of the curve is
- (a) $r = 2\cos\theta$ (b) $r^2 = 2\cos\theta$ (c) $r = 2\sin\theta$ (d) $r^2 = 2\sin\theta$
- 6. The graphs shown below are not to scale.

Edexcel FM Polar coordinates 1 section test solutions

Which diagram shows the graph of the curve $r = 1 + \cos\theta$? Which diagram shows the graph of the curve $r = \sin 3\theta$? Which diagram shows the graph of the curve $r = 3 + 2\cos\theta$? Which diagram shows the graph of the curve $r = \cos 3\theta$?

7. The centre of a circle has polar coordinates $\left(2, \frac{\pi}{4}\right)$. The radius of the circle is 2. The polar equation of the circle is

(a) $r = 4\sin\theta$ (b) $r = 4\sin(\theta - \frac{\pi}{4})$ (c) $r = 4\cos\theta$ (d) $r = 4\cos(\theta - \frac{\pi}{4})$

Edexcel FM Polar coordinates 1 section test solutions

Section test solutions

1.
$$r^{2} = x^{2} + y^{2} = 25 + 4 = 29$$

 $r = \sqrt{29} = 5.385$
 $\tan \theta = \frac{y}{x} = -\frac{2}{5} \Rightarrow \theta = -0.381 \text{ or } 2.761$

Since P is in the second quadrant, the polar coordinates of P are (5.385, 2.761).

2.
$$x = r\cos\theta = 3\cos\left(-\frac{5\pi}{6}\right) = 3 \times -\frac{\sqrt{3}}{2} = -2.598$$
$$y = r\sin\theta = 3\sin\left(-\frac{5\pi}{6}\right) = 3 \times -\frac{1}{2} = -1.5$$
The Cartesian coordinates of Ω are (-2.598 = 1.5)

The Cartesían coordinates of @ are (-2.598, - 1.5).

By symmetry, the shape has two sets of parallel sídes so it is a parallelogram. However, the two sets of sídes are not equal in length, so it is not a rhombus, and the diagonals are not equal in length, so it is not a rectangle.

4. $2r^2 \sin\theta \cos\theta = 1$

з.

 $2(r\cos\theta)(r\sin\theta) = 1$ 2xy = 1

5.
$$x^{2} + y^{2} = 2x$$

 $r^{2} = 2r\cos\theta$
 $r = 2\cos\theta$

Edexcel FM Polar coordinates 1 section test solutions

6. $r = 1 + \cos \theta$

when $\theta = 0$, r = 2. The value of r decreases until it reaches zero at $\theta = \pi$. Since $\cos(-\theta) = \cos\theta$, the graph is symmetrical about the initial line. This is graph Q.

 $r = sín з \theta$

The graph is at its maximum value of 1 when $\theta = \frac{\pi}{6}, \frac{5\pi}{6}$ and $-\frac{\pi}{2}$. This is graph S.

 $r = 3 + 2\cos\theta$ When $\theta = 0$, r = 5. The value of r decreases until it reaches 1 at $\theta = \pi$. Since $\cos(-\theta) = \cos\theta$, the graph is symmetrical about the initial line. This is graph P.

 $r = \cos 3\theta$

The graph is at its maximum value of 1 when $\theta = 0, \frac{2\pi}{3}$ and $-\frac{2\pi}{3}$. This is graph R.

7. From the diagram, $\frac{1}{2}r = 2\cos\left(\theta - \frac{\pi}{4}\right)$ $r = 4\cos\left(\theta - \frac{\pi}{4}\right)$

Alternative method:

Cartesian equation of circle is $\left(x - 2\cos\frac{\pi}{4}\right)^2 + \left(y - 2\sin\frac{\pi}{4}\right)^2 = 4$ $x^2 - 4x\cos\frac{\pi}{4} + 4\cos^2\frac{\pi}{4} + y^2 - 4y\sin\frac{\pi}{4} + 4\sin^2\frac{\pi}{4} = 4$ $x^2 + y^2 - 4x\cos\frac{\pi}{4} - 4y\sin\frac{\pi}{4} = 4 - 4\cos^2\frac{\pi}{4} - 4\sin^2\frac{\pi}{4}$ $r^2 - 4r\cos\theta\cos\frac{\pi}{4} - 4r\sin\theta\sin\frac{\pi}{4} = 4 - 2 - 2$ $r^2 - 4r\left(\cos\theta\cos\frac{\pi}{4} + \sin\theta\sin\frac{\pi}{4}\right) = 0$ $r - 4\cos\left(\theta - \frac{\pi}{4}\right) = 0$ $r = 4\cos\left(\theta - \frac{\pi}{4}\right)$