Section 1: Polar coordinates and curves

Exercise level 3

1. The point A moves so that $\mathrm{OA}=e \mathrm{AP}$, where e is a positive constant.
(i) Find the polar equation of the curve in the form $r=\mathrm{f}(\theta)$.
(ii) Find the Cartesian equation of the curve.
(iii) Hence show that if $e=1$, the curve is a parabola, and give its polar equation.

(iv) Explore using a graphing program how the curve varies as e varies.
2. Sketch the curve $r=\cos \theta+\tan \theta$ for $0 \leq \theta \leq \frac{\pi}{2}$.

Show by considering $\frac{\mathrm{d} r}{\mathrm{~d} \theta}$ that r increases as θ increases over this range. Extend this curve in the fourth quadrant between $(1,0)$ (in polar coordinates) and the origin. When does $r=0$?
3. (i) Show that the polar equation $r^{2}=2 \operatorname{cosec} 2 \theta$ represents the Cartesian equation $y=\frac{1}{x}$.
(ii) Find the polar equation of the curve $y=\frac{1}{x+y}$ in the form $r^{2}=\mathrm{f}(\theta)$.
(iii)Given $\cos \theta+\sin \theta=\sqrt{2} \sin \left(\theta+\frac{\pi}{4}\right)$, show that this curve can be written as

$$
r^{2}=\frac{\operatorname{cosec} \theta \operatorname{cosec}\left(\theta+\frac{\pi}{4}\right)}{\sqrt{2}}
$$

(iv) Sketch the curve using both its Cartesian and polar equations.

