Edexcel Further Maths Polar coordinates

Section 1: Polar coordinates and curves

Exercise level 3

1. The point A moves so that OA = eAP, where e is a positive constant.

- (i) Find the polar equation of the curve in the form $r = f(\theta)$.
- (ii) Find the Cartesian equation of the curve.
- (iii) Hence show that if e = 1, the curve is a parabola, and give its polar equation.
- (iv) Explore using a graphing program how the curve varies as *e* varies.
- 2. Sketch the curve $r = \cos \theta + \tan \theta$ for $0 \le \theta \le \frac{\pi}{2}$.

Show by considering $\frac{dr}{d\theta}$ that r increases as θ increases over this range. Extend this curve in the fourth quadrant between (1,0) (in polar coordinates) and the origin. When does r=0?

- 3. (i) Show that the polar equation $r^2 = 2\csc 2\theta$ represents the Cartesian equation $y = \frac{1}{x}$.
 - (ii) Find the polar equation of the curve $y = \frac{1}{x+y}$ in the form $r^2 = f(\theta)$.
 - (iii) Given $\cos \theta + \sin \theta = \sqrt{2} \sin \left(\theta + \frac{\pi}{4}\right)$, show that this curve can be written as $r^2 = \frac{\csc \theta \csc(\theta + \frac{\pi}{4})}{\sqrt{2}}$
 - (iv)Sketch the curve using both its Cartesian and polar equations.