

Section 1: Polar coordinates and curves

Exercise level 2

- 1. (i) A rhombus (a quadrilateral with all sides equal) is centred on the origin. One corner, in polar coordinates (r, θ) , is at $(2, \frac{\pi}{3})$. The area of the rhombus is 5. Find the other corners in polar coordinates (r, θ) with $0 \le \theta \le 2\pi$.
 - (ii) The corners of a quadrilateral OABC, in polar coordinates (r, θ) , are (0, 0), $(3, \frac{\pi}{6})$, $(4, \frac{\pi}{3})$ and $(2, \frac{\pi}{2})$. Find its area.
- 2. (i) Given the curve

$$r = f(\theta) = \sin \theta + \frac{1}{\sin \theta}$$
,

show $f(-\theta) = -f(\theta)$ and $f(\pi - \theta) = f(\theta)$.

- (ii) Given also that $y = r \sin \theta$, show y > 1.
- (iii)Sketch the curve for $0 < \theta < \pi$. What will the curve be for $\pi < \theta < 2\pi$?
- (iv)Find $\frac{dr}{d\theta}$ and hence find the point(s) on the curve closest to O.

3. (i) Show that the curve
$$r = \frac{1}{\theta} + \frac{1}{\pi - \theta}$$
 is symmetrical about the line $\theta = \frac{\pi}{2}$.

(ii) Find $\frac{dr}{d\theta}$, and by examining its sign just before and just after $\theta = \frac{\pi}{2}$, show that *r* has a minimum at $\theta = \frac{\pi}{2}$.

(iii)Sketch the curve for $0 < \theta < \pi$, given that y = 1 is an asymptote to the curve.

4. Sketch the polar curve $r = \cos \theta + k$ for $0 \le \theta \le 2\pi$ for (i) k = 1 (ii) k = 3

Show that the Cartesian equation of this curve can be written as

$$\sqrt{x^2 + y^2} - \frac{x}{\sqrt{x^2 + y^2}} = k$$

and, by squaring this, deduce that the curve is approximately $(x-1)^2 + y^2 = k^2$ for large *k*.

- 5. A curve has the polar equation $r = a(\cos \theta \sin \theta)$, where a > 0 and $0 \le \theta < 2\pi$.
 - (i) Give the values of θ for which r = 0.
 - (ii) Given that $\cos\theta \sin\theta = \sqrt{2}\cos(\theta + \frac{\pi}{4})$, find the maximum possible value for
 - |r| and the values of θ for which it occurs.
 - (iii)Sketch the curve. Show that the curve is a circle.

Edexcel FM Polar coordinates 1 Exercise

- 6. The ellipse shown has Cartesian equation $\frac{x^2}{4} + y^2 = 1$.
 - (i) Find the polar equation of the curve in the form $r^2 = f(\theta)$.

(ii) Give the polar coordinates (r, θ) of the points where the straight line $r = \frac{2}{\sqrt{5}} \sec \theta$ cuts the ellipse.