Edexcel Further Maths Polar coordinates

Section 1: Polar coordinates and curves

Exercise level 2

1. (i) A rhombus (a quadrilateral with all sides equal) is centred on the origin. One corner, in polar coordinates (r, θ), is at $\left(2, \frac{\pi}{3}\right)$. The area of the rhombus is 5 .
Find the other corners in polar coordinates (r, θ) with $0 \leq \theta \leq 2 \pi$.
(ii) The corners of a quadrilateral OABC , in polar coordinates (r, θ), are $(0,0)$, $\left(3, \frac{\pi}{6}\right),\left(4, \frac{\pi}{3}\right)$ and $\left(2, \frac{\pi}{2}\right)$. Find its area.
2. (i) Given the curve

$$
r=\mathrm{f}(\theta)=\sin \theta+\frac{1}{\sin \theta},
$$

show $\mathrm{f}(-\theta)=-\mathrm{f}(\theta)$ and $\mathrm{f}(\pi-\theta)=\mathrm{f}(\theta)$.
(ii) Given also that $y=r \sin \theta$, show $y>1$.
(iii)Sketch the curve for $0<\theta<\pi$. What will the curve be for $\pi<\theta<2 \pi$?
(iv)Find $\frac{\mathrm{d} r}{\mathrm{~d} \theta}$ and hence find the point(s) on the curve closest to O .
3. (i) Show that the curve $r=\frac{1}{\theta}+\frac{1}{\pi-\theta}$ is symmetrical about the line $\theta=\frac{\pi}{2}$.
(ii) Find $\frac{\mathrm{d} r}{\mathrm{~d} \theta}$, and by examining its sign just before and just after $\theta=\frac{\pi}{2}$, show that r has a minimum at $\theta=\frac{\pi}{2}$.
(iii)Sketch the curve for $0<\theta<\pi$, given that $y=1$ is an asymptote to the curve.
4. Sketch the polar curve $r=\cos \theta+k$ for $0 \leq \theta \leq 2 \pi$ for

$$
\text { (i) } \quad k=1 \quad \text { (ii) } \quad k=3
$$

Show that the Cartesian equation of this curve can be written as

$$
\sqrt{x^{2}+y^{2}}-\frac{x}{\sqrt{x^{2}+y^{2}}}=k
$$

and, by squaring this, deduce that the curve is approximately $(x-1)^{2}+y^{2}=k^{2}$ for large k.
5. A curve has the polar equation $r=a(\cos \theta-\sin \theta)$, where $a>0$ and $0 \leq \theta<2 \pi$.
(i) Give the values of θ for which $r=0$.
(ii) Given that $\cos \theta-\sin \theta=\sqrt{2} \cos \left(\theta+\frac{\pi}{4}\right)$, find the maximum possible value for $|r|$ and the values of θ for which it occurs.
(iii)Sketch the curve. Show that the curve is a circle.

Edexcel FM Polar coordinates 1 Exercise

6. The ellipse shown has Cartesian equation $\frac{x^{2}}{4}+y^{2}=1$.
(i) Find the polar equation of the curve in the form $r^{2}=\mathrm{f}(\theta)$.
(ii) Give the polar coordinates (r, θ) of the points where the
 straight line $r=\frac{2}{\sqrt{5}} \sec \theta$ cuts the ellipse.
