Edexcel Further Mathematics Further calculus

Section 1: Improper integrals

Section test

1. Which of the following integrals are improper integrals?
(i) $\int_{0}^{\infty} x \mathrm{~d} x$
(ii) $\int_{0}^{1} \frac{1}{x} \mathrm{~d} x$
(iii) $\int_{0}^{1} \frac{1}{x+1} \mathrm{~d} x$
(iv) $\int_{1}^{3} \frac{1}{x-2} \mathrm{~d} x$
2. The value of the integral $\int_{1}^{\infty} \frac{1}{x^{1 / 3}} \mathrm{~d} x$ is
(a) $\frac{3}{2}$
(b) 3
(c) $-\frac{3}{2}$
(d) undefined
3. The value of the integral $\int_{0}^{8} \frac{1}{x^{1 / 3}} \mathrm{~d} x$ is
(a) $\frac{3}{2}$
(b) 3
(c) 6
(d) undefined
4. The value of the integral $\int_{1}^{\infty} \frac{1}{x^{3}} \mathrm{~d} x$ is
(a) $\frac{1}{2}$
(b) 1
(c) $-\frac{1}{2}$
(d) undefined
5. The value of the integral $\int_{0}^{2} \frac{1}{x^{3}} \mathrm{~d} x$ is
(a) $\frac{1}{2}$
(b) $-\frac{1}{8}$
(c) $\frac{1}{8}$
(d) undefined
6. Which of the following integrals can be evaluated?
(i) $\quad \int_{-2}^{\infty} \frac{1}{x^{2}} \mathrm{~d} x$
(ii) $\int_{0}^{\infty} \frac{1}{\sqrt{x}} \mathrm{~d} x$
(a) (i) only
(b) (ii) only
(c) both
(d) neither

Edexcel FM Further calculus 1 section test solutions

Solutions to section test

1. (i) is an improper integral as one of the limits is infinity
(ii) is an improper integral as the integrand is undefined at $x=0$
(iii) is not an improper integral (the integrand is undefined at $x=-1$, but this is not between the limits of the integral
(iv) is an improper integral as the integrand is undefined at $x=2$.
2. $\int_{1}^{a} \frac{1}{x^{1 / 3}} d x=\int_{1}^{a} x^{-1 / 3} d x$

$$
\begin{aligned}
& =\left[\frac{3}{2} x^{2 / 3}\right]_{1}^{a} \\
& =\frac{3}{2} a^{2 / 3}-\frac{3}{2}
\end{aligned}
$$

As $a \rightarrow \infty, a^{2 / 3} \rightarrow \infty$, so the integral is undefined.
3. $\int_{a}^{8} \frac{1}{x^{1 / 3}} d x=\int_{a}^{8} x^{-1 / 3} d x$

$$
\begin{aligned}
& =\left[\frac{3}{2} x^{2 / 3}\right]_{a}^{8} \\
& =\frac{3}{2} \times 8^{2 / 3}-\frac{3}{2} a^{2 / 3} \\
& =6-\frac{3}{2} a^{2 / 3}
\end{aligned}
$$

As $a \rightarrow 0, a^{2 / 3} \rightarrow 0$, so the value of the integral is 6 .
4. $\int_{1}^{a} \frac{1}{x^{3}} d x=\int_{1}^{a} x^{-3} d x$

$$
\begin{aligned}
& =\left[-\frac{1}{2} x^{-2}\right]_{1}^{a} \\
& =-\frac{1}{2 a^{2}}+\frac{1}{2}
\end{aligned}
$$

As $a \rightarrow \infty, \frac{1}{2 a^{2}} \rightarrow 0$, so the value of the integral is $\frac{1}{2}$.
5. $\int_{a}^{2} \frac{1}{x^{3}} d x=\int_{a}^{2} x^{-3} d x$

$$
\begin{aligned}
& =\left[-\frac{1}{2} x^{-2}\right]_{a}^{2} \\
& =-\frac{1}{8}+\frac{1}{2 a^{2}}
\end{aligned}
$$

As $a \rightarrow 0, \frac{1}{2 a^{2}}$ is undefined, so the integral is undefined.
6. (i) $\int_{-2}^{a} \frac{1}{x^{2}} d x=\int_{-2}^{a} x^{-2} d x+\int_{b}^{c} x^{-2} d x$

$$
\begin{aligned}
& =\left[-x^{-1}\right]_{-2}^{a}+\left[-x^{-1}\right]_{b}^{c} \\
& =-\frac{1}{a}-\frac{1}{2}-\frac{1}{c}+\frac{1}{b}
\end{aligned}
$$

As $a \rightarrow 0, b \rightarrow 0$ and $c \rightarrow \infty, \frac{1}{a}$ and $\frac{1}{b} \rightarrow 0$, and $\frac{1}{c}$ is undefined, so the integral is undefined.
(ii) $\int_{0}^{a} \frac{1}{\sqrt{x}} d x=\int_{0}^{a} x^{-1 / 2} d x$

$$
\begin{aligned}
& =\left[2 x^{1 / 2}\right]_{0}^{a} \\
& =2 \sqrt{a}
\end{aligned}
$$

As $a \rightarrow \infty, \sqrt{a}$ is undefined, so the integral is undefined.

