Advanced Mathematics Support Programme ${ }^{\text {© }}$

Edexcel A Level FM Revision Questions

Hyperbolic functions; Maclaurin series

Question 1

Solve the equation $4 \tanh x+\frac{13}{\cosh x}=8$ giving your answer in terms of natural logarithms.

Question 2

(i) Show that $\operatorname{arsinh} x=\ln \left(x+\sqrt{x^{2}+1}\right)$.
(ii) There are two points on the curve $y=\frac{\cosh x}{2+\sinh x}$ at which the gradient is $\frac{1}{9}$.

Show that one of these points is $\left(\ln (1+\sqrt{2}), \frac{\sqrt{2}}{3}\right)$, and find the coordinates of the other point in a similar form.

Question 3

Find the value of

$$
\int_{1}^{2} \frac{1}{\sqrt{9 x^{2}-4}} d x
$$

giving your answer in an exact logarithmic form.

Question 4

By using the definitions of $\sinh x$ and $\cosh x$, show that

$$
\cosh 2 x=1+2 \sinh ^{2} x
$$

Question 5

(i) Use the substitution $x=2 \sinh u$ to show that

$$
\int \sqrt{x^{2}+4} \mathrm{~d} x=2 \operatorname{arsinh}\left(\frac{1}{2} x\right)+\frac{1}{2} x \sqrt{x^{2}+4}+c
$$

where c is an arbitrary constant
(ii) By first expressing $t^{2}+2 t+5$ in a completed square form, show that

$$
\int_{-1}^{1} \sqrt{t^{2}+2 t+5} \mathrm{~d} t=2[\ln (1+\sqrt{2})+\sqrt{2}]
$$

Question 6

By using an appropriate substitution, or otherwise, find

$$
\int \sqrt{4 x^{2}-25} d x
$$

Question 7

(i) Write down the series for $\ln (1+x)$ and the series for $\ln (1-x)$, both as far as the terms in x^{5}.
(ii) Hence, write down the series for

$$
\ln \left(\frac{1+x}{1-x}\right)
$$

(iii) Use the series in part (ii) to show that

$$
\sum_{0}^{\infty} \frac{1}{(2 r+1) 4^{r}}=\ln 3
$$

Question 8

(i) Given that $\mathrm{f}(x)=\arctan (\sqrt{2}+x)$, find $\mathrm{f}^{\prime}(x)$ and $\mathrm{f}^{\prime \prime}(x)$.
(ii) Hence find the Maclaurin series for $\arctan (\sqrt{2}+x)$ as far as the term in x^{2}.
(iii) Hence show that, if h is small,

$$
\int_{-h}^{h} \arctan (\sqrt{2}+x) \mathrm{d} x \approx \frac{2}{9} h^{3}
$$

Question 9

Assuming that x^{4} and higher powers may be neglected, write down the Maclaurin series approximations for $\sin x$ and $\cos x$, where x is in radians.

Hence obtain an approximation for $\tan x$ in the form $a x+b x^{3}$.

