Advanced Mathematics
Support Programme ${ }^{\text {© }}$

Edexcel A Level FM Revision Questions

Sequences, series; induction; roots of equations (real)

Question 1

A sequence $\left\{u_{n}\right\}$ is defined by the recurrence relation

$$
u_{n+1}=u_{n}+2^{n+1}
$$

where $u_{1}=5$.
Prove by induction that $u_{n}=2^{n+1}+1$.

Question 2

Prove by induction that

$$
1+8+27+\ldots+n^{3}=\frac{1}{4} n^{2}(n+1)^{2}
$$

Question 3

Show that

$$
5^{n}+2 \times 11^{n}
$$

is divisible by 3 for all values of $n \geq 0, n \in \mathbb{N}$.

Question 4

(i) The equation $x^{2}+p x+q x+5=0$ has roots α, β, and γ, where

$$
\begin{aligned}
& \alpha+\beta+\gamma=3 \\
& \alpha^{2}+\beta^{2}+\gamma^{2}=4
\end{aligned}
$$

Find p and q.
(ii) The roots of the cubic equation $2 x^{3}-5 x^{2}+u x+v=0$ are $w, 10 w$ and $-6 w$.

Find the values of the roots and the values of u and v.

Question 5

The roots of the cubic equation $x^{3}-4 x^{2}+8 x+7=0$ are α, β, and γ.
Find the cubic equation whose roots are $2 \alpha+1,2 \beta+1$ and $2 \gamma+1$.

Question 6

Use standard formulae to show that

$$
\sum_{r=1}^{n} r^{2}(3-4 r)=\frac{1}{2} n(n+1)\left(1-2 n^{2}\right)
$$

Question 7

(i) Express

$$
\frac{1}{r(r+2)}
$$

in partial fractions.
(ii) Hence, prove by the method of differences that

$$
\sum_{r=1}^{n} \frac{1}{r(r+2)}=\frac{n(A n+B)}{4(n+1)(n+2)}
$$

where A and B are constants that need to be found.

Question 8

Find the values of A, B and C in the partial fractions and show that $A+B+C=0$.

$$
\frac{2 r+5}{(2 r-1)(2 r+1)(2 r+3)}=\frac{A}{2 r-1}+\frac{B}{2 r+1}+\frac{C}{2 r+3}
$$

Hence, use the method of differences to find the values of P, Q and R in the expression

$$
\sum_{r=1}^{n} \frac{2 r+5}{(2 r-1)(2 r+1)(2 r+3)}=P+\frac{Q}{2 n+1}+\frac{R}{2 n+3}
$$

