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Edexcel A Level FM Revision Questions 

Differential equations; SHM 

 
Question 1 

The equation of a curve in the x-y plane satisfies the differential equation 
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for 1x   . 

(i) Show that an integrating factor for this equation is  

  e (1 )x x    

 and hence find the general solution for y in terms of x. 

The curve passes through (0, -3). 

(ii) Find the equation of the curve. 

 

Question 2 

A raindrop falls from rest through a cloud. Its velocity, v ms
-1

 vertically downwards, at time t 

seconds after it starts to fall is modelled by the differential equation 
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where g is the acceleration due to gravity and is a constant. 

(i) Solve the differential equation and show that 
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In an improved model, the term 2  is replaced by 2v , giving the differential equation  
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(ii) Find the solution to the differential equation subject to the same initial conditions as  

  before. 

  

Question 3 

The vertical oscillations of the (undamped) springs of the front suspension of a car can be 

modelled by the differential equation 
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where y is the vertical displacement of the top of the suspension at time t. 
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(i) Find the general solution of this differential equation and describe briefly the behaviour  

  of this system. 

The car now travels over a rough surface. The vertical motion can now be modelled by the 

differential equation 
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(ii) By using an appropriate particular integral find the general solution of this differential  

  equation. 

Initially 1y   and 
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(iii) Find the solution subject to these conditions. 

(iv) Describe briefly the behaviour of this system. 

A refined model for the suspension is given by  
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(v) Again, by finding the complementary and particular integral, find the general solution of  

  this differential equation. 

(vi) Describe briefly the behaviour of this system. 

 

Question 4 

(i) Find the general solution of the differential equation  
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(ii) Given that when 0x  , 1y   and 
d

0
d

y

x
 , find the particular solution. 

  

Question 5 

A particle moves in the x-y plane such that the coordinates (x, y) metres at time t seconds are 

given by the simultaneous differential equations  
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where 0t  . 

(i) Show that  
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(ii)  Find the general solution for x in terms of t. 

  Hence obtain the corresponding general solution for y. 

(iii) Given that 1x  , 19y   when 0t  , find the particular solutions for x and y in terms of t  

  and sketch graphs of x against t and y against t. Describe the long-term behaviour of the  

  particle. 

 


