

Edexcel A Level FM Revision Questions: Solutions

Polar curves

Solutions

This can be obtained from the parabola $y^2 = 4x$ by the following steps:

 $y^2 = 4(-x) = -4x$ [reflection in the *y*-axis; note that the curve now only exists for negative *x*]

2.(i) $r = 5 + 4\cos\theta$

Step 1: As r is a function of $cos\theta$, the curve will be symmetric about the x-axis.

Step 2: r > 0 at all times

Step 3: Key points to plot are $\theta = 0, r = 9; \ \theta = \frac{\pi}{2}, r = 5; \ \theta = \pi, r = 1$

(ii) The required *x*-coordinate can be found by investigating the vertical tangents; ie when $\frac{dx}{d\theta} = 0$ [when the *x*-coordinate is (instantaneously) not changing as θ changes] $x = rcos\theta = (5 + 4\cos\theta)cos\theta$ so that $\frac{dx}{d\theta} = (-4sin\theta)cos\theta + (5 + 4cos\theta)(-sin\theta) = -8sin\thetacos\theta - 5sin\theta$ Then $\frac{dx}{d\theta} = 0 \Rightarrow sin\theta = 0$ (ie $\theta = 0$ or π) or $cos\theta = -\frac{5}{8}$ $\Rightarrow x = (5 + 4\cos\theta)cos\theta = (5 - \frac{20}{8})(-\frac{5}{8}) = -\frac{25}{16}$ (iii) Area enclosed by curve $= 2\int_{0}^{\pi}\frac{1}{2}(5 + 4\cos\theta)^{2}d\theta$ $= \int_{0}^{\pi}25 + 16cos^{2}\theta + 40cos\theta d\theta$ $= [33\theta + 4sin2\theta + 40sin\theta]_{0}^{\pi}$ $= 33\pi$

[Rough check: Area of rectangle of base 11 and height 10 is approx. 35π]

3. (i) Step 1: As $r = \pm \sqrt{\sin 2\theta}$ isn't a function of either $\cos\theta$ or $\sin\theta$, there is no symmetry about the *x* or *y* axis.

Step 2: The curve isn't defined for $\frac{\pi}{2} < \theta < \pi$ or for $\frac{3\pi}{2} < \theta < 2\pi$ (as $sin2\theta < 0$).

Step 3: For each θ there will positive and negative values of r of the same magnitude. [However the negative values of r for θ will overlap with the positive values for $\theta + \pi$.]

Step 4: Key points to plot are: $\theta = 0, r = 0$; $\theta = \frac{\pi}{4}, r = \pm 1$; $\theta = \frac{\pi}{2}, r = 0$ (and the cycle repeats itself for $\theta = \pi$ to $\theta = \frac{3\pi}{2}$).

Step 5: The gradient at $\theta = 0$ (when r = 0) is 0 (ie along the line $\theta = 0$), and at $\theta = \frac{\pi}{2}$ it is ∞ (ie along the line $\theta = \frac{\pi}{2}$).

(ii) r = 1 when $\theta = \frac{\pi}{4}$ for $r^2 = sin2\theta$, and when $\theta = 0$ for $r^2 = cos2\theta$, so the curve for $r^2 = sin2\theta$ needs to be rotated by $\frac{\pi}{4}$ clockwise.

[This rotation transforms $r^2 = sin2\theta$ to $r^2 = sin2(\theta + \frac{\pi}{4})$ [as

clockwise is the negative direction] = $sin\left(2\theta + \frac{\pi}{2}\right) = cos2\theta$]

(iii)
$$y = r\sin\theta$$
, $r^2 = \sin2\theta \Rightarrow y^2 = \sin2\theta \cdot \sin^2\theta$
 $\Rightarrow 2y \frac{dy}{d\theta} = 2\cos2\theta \sin^2\theta + \sin2\theta (2\sin\theta\cos\theta)$
Then $\frac{dy}{d\theta} = 0 \Rightarrow (\cos^2\theta - \sin^2\theta)\sin^2\theta + (2\sin\theta\cos\theta)(\sin\theta\cos\theta) = 0$
 $\Rightarrow 3\cos^2\theta \sin^2\theta - \sin^4\theta = 0$
 $\Rightarrow \sin^2\theta (3\cos^2\theta - \sin^2\theta) = 0$
 $\Rightarrow \sin^2\theta (3\cos^2\theta - (1 - \cos^2\theta)) = 0$
 $\Rightarrow \sin^2\theta (4\cos^2\theta - 1) = 0$
 $\Rightarrow \theta = 0 \text{ or } \pi \text{ (within } [0, 2\pi)\text{) (ie when the curve is at the Origin)}$
or $\cos\theta = \pm \frac{1}{2}$, so that $\theta = \frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}$ or $\frac{5\pi}{3}$
The curve descript exist for $\theta = \frac{2\pi}{3}$ and $\frac{5\pi}{3}$ and so the required wall

The curve doesn't exist for $\theta = \frac{2\pi}{3}$ and $\frac{5\pi}{3}$, and so the required value is

 $\theta = \frac{\pi}{3}$ (when the *y*-coordinate is positive).

At
$$\theta = \frac{\pi}{3}$$
, $y^2 = sin2\theta$. $sin^2\theta = \left(\frac{\sqrt{3}}{2}\right)\left(\frac{\sqrt{3}}{2}\right)^2 = \left(\frac{\sqrt{3}}{2}\right)^3$
 $\Rightarrow y = \left(\frac{\sqrt{3}}{2}\right)^{\frac{3}{2}} = 0.80593 = 0.806$ (3sf)

