Advanced Mathematics

Support Programme ${ }^{\text {© }}$

Edexcel A Level FM Revision Questions: Solutions
 Polar curves

Solutions

1. (i) $(x-1)^{2}+y^{2}=1$

$x=r \cos \theta$ and $y=r \sin \theta$
So $r^{2} \cos ^{2} \theta+1-2 r \cos \theta+r^{2} \sin ^{2} \theta=1$
$\Rightarrow r^{2}-2 r \cos \theta=0$
$\Rightarrow r=2 \cos \theta$ or $r=0$
ie $r=2 \cos \theta$ [with $r=0$ when $\theta=\frac{\pi}{2}$]
(ii) $r=\frac{2}{1+\cos \theta} ; x=r \cos \theta$ and $y=r \sin \theta ;$ also $r^{2}=x^{2}+y^{2}$

So $r+r \cos \theta=2 \Rightarrow r=2-x \Rightarrow r^{2}=(2-x)^{2}$
$\Rightarrow x^{2}+y^{2}=4+x^{2}-4 x \Rightarrow y^{2}=4(1-x)$

This can be obtained from the parabola $y^{2}=4 x$ by the following steps:
$y^{2}=4(-x)=-4 x$ [reflection in the y-axis; note that the curve now only exists for negative x]
$y^{2}=-4(x-1)=4(1-x) \quad\left[\right.$ translation of $\left.\binom{1}{0}\right]$

2.(i) $r=5+4 \cos \theta$

Step 1: As r is a function of $\cos \theta$, the curve will be symmetric about the x-axis.
Step 2: $r>0$ at all times
Step 3: Key points to plot are $\theta=0, r=9 ; \theta=\frac{\pi}{2}, r=5 ; \theta=\pi, r=1$

(ii) The required x-coordinate can be found by investigating the vertical tangents; ie when $\frac{d x}{d \theta}=0$ [when the x-coordinate is (instantaneously) not changing as θ changes]
$x=r \cos \theta=(5+4 \cos \theta) \cos \theta$
so that $\frac{d x}{d \theta}=(-4 \sin \theta) \cos \theta+(5+4 \cos \theta)(-\sin \theta)=-8 \sin \theta \cos \theta-5 \sin \theta$
Then $\frac{d x}{d \theta}=0 \Rightarrow \sin \theta=0$ (ie $\theta=0$ or π) or $\cos \theta=-\frac{5}{8}$
$\Rightarrow x=(5+4 \cos \theta) \cos \theta=\left(5-\frac{20}{8}\right)\left(-\frac{5}{8}\right)=-\frac{25}{16}$
(iii) Area enclosed by curve $=2 \int_{0}^{\pi} \frac{1}{2}(5+4 \cos \theta)^{2} d \theta$
$=\int_{0}^{\pi} 25+16 \cos ^{2} \theta+40 \cos \theta d \theta$
$=\int_{0}^{\pi} 25+8(1+\cos 2 \theta)+40 \cos \theta d \theta$
$=[33 \theta+4 \sin 2 \theta+40 \sin \theta]_{0}^{\pi}$
$=33 \pi$
[Rough check: Area of rectangle of base 11 and height 10 is approx. 35π]
3. (i) Step 1: As $r= \pm \sqrt{\sin 2 \theta}$ isn't a function of either $\cos \theta$ or $\sin \theta$, there is no symmetry about the x or y axis.

Step 2: The curve isn't defined for $\frac{\pi}{2}<\theta<\pi$ or for $\frac{3 \pi}{2}<\theta<2 \pi$ (as $\sin 2 \theta<0$).
Step 3: For each θ there will positive and negative values of r of the same magnitude. [However the negative values of r for θ will overlap with the positive values for $\theta+\pi$.]

Step 4: Key points to plot are: $\theta=0, r=0 ; \theta=\frac{\pi}{4}, r= \pm 1 ; \theta=\frac{\pi}{2}, r=0$ (and the cycle repeats itself for $\theta=\pi$ to $\theta=\frac{3 \pi}{2}$).

Step 5: The gradient at $\theta=0$ (when $r=0$) is 0 (ie along the line $\theta=0$), and at $\theta=\frac{\pi}{2}$ it is ∞ (ie along the line $\theta=\frac{\pi}{2}$).

(ii) $r=1$ when $\theta=\frac{\pi}{4}$ for $r^{2}=\sin 2 \theta$, and when $\theta=0$ for $r^{2}=\cos 2 \theta$, so the curve for $r^{2}=\sin 2 \theta$ needs to be rotated by $\frac{\pi}{4}$ clockwise.
[This rotation transforms $r^{2}=\sin 2 \theta$ to $r^{2}=\sin 2\left(\theta+\frac{\pi}{4}\right)$ [as clockwise is the negative direction] $\left.=\sin \left(2 \theta+\frac{\pi}{2}\right)=\cos 2 \theta\right]$
(iii) $y=r \sin \theta, r^{2}=\sin 2 \theta \Rightarrow y^{2}=\sin 2 \theta \cdot \sin ^{2} \theta$
$\Rightarrow 2 y \frac{d y}{d \theta}=2 \cos 2 \theta \sin ^{2} \theta+\sin 2 \theta(2 \sin \theta \cos \theta)$
Then $\frac{d y}{d \theta}=0 \Rightarrow\left(\cos ^{2} \theta-\sin ^{2} \theta\right) \sin ^{2} \theta+(2 \sin \theta \cos \theta)(\sin \theta \cos \theta)=0$
$\Rightarrow 3 \cos ^{2} \theta \sin ^{2} \theta-\sin ^{4} \theta=0$
$\Rightarrow \sin ^{2} \theta\left(3 \cos ^{2} \theta-\sin ^{2} \theta\right)=0$
$\Rightarrow \sin ^{2} \theta\left(3 \cos ^{2} \theta-\left(1-\cos ^{2} \theta\right)\right)=0$
$\Rightarrow \sin ^{2} \theta\left(4 \cos ^{2} \theta-1\right)=0$
$\Rightarrow \theta=0$ or π (within $[0,2 \pi)$) (ie when the curve is at the Origin)
or $\cos \theta= \pm \frac{1}{2}$, so that $\theta=\frac{\pi}{3}, \frac{2 \pi}{3}, \frac{4 \pi}{3}$ or $\frac{5 \pi}{3}$
The curve doesn't exist for $\theta=\frac{2 \pi}{3}$ and $\frac{5 \pi}{3}$, and so the required value is
$\theta=\frac{\pi}{3}$ (when the y-coordinate is positive).

$$
\begin{aligned}
& \text { At } \theta=\frac{\pi}{3}, y^{2}=\sin 2 \theta \cdot \sin ^{2} \theta=\left(\frac{\sqrt{3}}{2}\right)\left(\frac{\sqrt{3}}{2}\right)^{2}=\left(\frac{\sqrt{3}}{2}\right)^{3} \\
& \Rightarrow y=\left(\frac{\sqrt{3}}{2}\right)^{\frac{3}{2}}=0.80593=0.806(3 \mathrm{sf})
\end{aligned}
$$

