Advanced Mathematics
Support Programme ${ }^{\text {© }}$

Edexcel A Level FM Revision Questions

Complex numbers; complex roots of equations

Question 1

If $3+4 \mathrm{i}$ is one of the roots of the quartic equation

$$
x^{4}-10 x^{3}+54 x^{2}-130 x+125=0
$$

find the other three roots.

Question 2

If $\sin 5 \theta=A \sin \theta+B \sin ^{3} \theta+C \sin ^{5} \theta$, fnd the values of A, B and C.

Question 3

(i) Show that if $z=\cos \theta+\mathrm{i} \sin \theta$ then $z^{n}+\frac{1}{z^{n}}=2 \cos n \theta$ and $z^{n}-\frac{1}{z^{n}}=2 \mathrm{i} \sin n \theta$.
(ii) Show that $\cos ^{3} \theta \sin ^{4} \theta=\frac{1}{64}[\cos 7 \theta-\cos 5 \theta-3 \cos 3 \theta+3 \cos \theta]$.

Question 4

θ is a real number such that $0<\theta<\frac{\pi}{6}$.
(i) Show that

$$
\left(1+\frac{1}{2} \mathrm{e}^{3 \mathrm{i} \theta}\right)\left(1+\frac{1}{2} \mathrm{e}^{-3 \mathrm{i} \theta}\right)=\frac{5}{4}+\cos 3 \theta
$$

(ii) Infinite series C and S are defined by

$$
\begin{aligned}
& C=\cos 2 \theta-\frac{1}{2} \cos 5 \theta+\frac{1}{4} \cos 8 \theta-\frac{1}{8} \cos 11 \theta+\ldots \\
& S=\sin 2 \theta-\frac{1}{2} \sin 5 \theta+\frac{1}{4} \sin 8 \theta-\frac{1}{8} \sin 11 \theta+\ldots
\end{aligned}
$$

By considering $C+\mathrm{i} S$, show that

$$
C=\frac{4 \cos 2 \theta+2 \cos \theta}{5+4 \cos 3 \theta}
$$

and find a similar expression for S.

Question 5

(i) Find the cube roots of $-2-2 \mathrm{i}$ in the form $R \mathrm{e}^{\mathrm{i} \theta}$, where $R>0$ and $-\pi<\theta<\pi$.

These cube roots are represented by the points A, B and C in the Argand diagram, where A is in the first quadrant and $A B C$ are anticlockwise.

M is the midpoint of AB and M represents the complex number w.
(ii) Draw on an Argand diagram the points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and M .
(iii) Find the modulus and argument of w.
(iv) Find w^{6} in the form $a+b \mathrm{i}$.

Question 6

z is a complex number such that

$$
|z-2+3 i|=5
$$

(i) Sketch on an Argand diagram the locus of points that satisfy the above equation.
(ii) Find the minimum and maximum value of $|z|$ for points that lie on the locus.

Question 7

z is a complex number that represents points $\mathrm{P}(x, y)$ in the Argand diagram.
Given that

$$
|z-1|=2|z+2|
$$

show that the locus of points P is given by

$$
(x+3)^{2}+y^{2}=4
$$

Question 8

z is a complex number such that

$$
(z-3)^{3}=8 \mathrm{i}
$$

(i) Write each of the solutions of the equation in the form $a+b$ i.
(ii) Sketch these points, labelling them A, B and C, on an Argand diagram such that A has the smallest modulus and B the largest.
(iii) Find the area of the quadrilateral OABCD where O is the origin.

