Edexcel Further Maths Hyperbolic functions

Section 2: The inverse hyperbolic functions

Exercise level3

1. (i) Show that if $y=\operatorname{arcosh} x$, then $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{\sqrt{x^{2}-1}}$.
(ii) Hence use integration by parts to find $\int \frac{1}{\sqrt{x^{2}-1}} \operatorname{arcosh} x \mathrm{~d} x$.
(iii) Using a similar method, or otherwise, find $\int \frac{1}{\sqrt{1+x^{2}}} \operatorname{arsinh} x \mathrm{~d} x$.
2. (i) Show that arsinh $x>\operatorname{arcosh} x$ for all $x>1$.
(ii) Show that $\operatorname{arsinh} x-\operatorname{arcosh} x \rightarrow 0$ as $x \rightarrow \infty$.
(iii) Find the smallest integer n such that $\operatorname{arsinh} n-\operatorname{arcosh} n<\ln (1.01)$.
3. You are given that $y=a \operatorname{arcosh} x+b \operatorname{arsinh} x$ and that $y^{\prime}(2)=\sqrt{8}-\sqrt{6}$ and $y^{\prime}(3)=\frac{1}{2}(\sqrt{8}-\sqrt{6})$.
Find the values of a and b in exact form.
Check your answers using a graphing program.
