

Section 2: The inverse hyperbolic functions

Exercise level 3

1. (i)	Show that if $y = \operatorname{arcosh} x$, then $\frac{dy}{dx} = \frac{1}{\sqrt{x^2 - 1}}$.
(ii)	Hence use integration by parts to find $\int \frac{1}{\sqrt{x^2 - 1}} \operatorname{arcosh} x dx$.
(iii)	Using a similar method, or otherwise, find $\int \frac{1}{\sqrt{1+x^2}} \operatorname{arsinh} x dx$.

- 2. (i) Show that $\operatorname{arsinh} x > \operatorname{arcosh} x$ for all x > 1.
 - (ii) Show that $\operatorname{arsinh} x \operatorname{arcosh} x \to 0$ as $x \to \infty$.
 - (iii) Find the smallest integer *n* such that $\operatorname{arsinh} n \operatorname{arcosh} n < \ln(1.01)$.
- 3. You are given that $y = a \operatorname{arcosh} x + b \operatorname{arsinh} x$ and that $y'(2) = \sqrt{8} \sqrt{6}$ and $y'(3) = \frac{1}{2} \left(\sqrt{8} \sqrt{6} \right)$.

Find the values of a and b in exact form. Check your answers using a graphing program.

