Edexcel Further Maths Hyperbolic functions

Section 2: The inverse hyperbolic functions

Exercise level 2

1. Evaluate the integral $\int \frac{\mathrm{d} x}{\sqrt{4 x^{2}-16 x+32}}$.
2. (i) Given that $c \geq 1$ and $\cosh x=c$, show that $x= \pm \ln \left(c+\sqrt{c^{2}-1}\right)$.
(ii) Solve the equation $\sinh ^{2} x+3 \cosh x=9$, giving the answers in an exact logarithmic form.
3. (i) Prove that $\operatorname{arsinh} x=\ln \left(x+\sqrt{x^{2}+1}\right)$.
(ii) Find $\int_{0}^{2} \frac{1}{\sqrt{3 x^{2}+4}} \mathrm{~d} x$, giving your answer in logarithmic form.
4. Using the substitution $2 x=\sinh u$, find $\int_{0}^{\sqrt{2}} \sqrt{4 x^{2}+1} \mathrm{~d} x$.
5. For each of the following integrals, give the method you would use for different sets of integers k. You do not need to find the integrals.
(i) $\int \frac{1}{\sqrt{k+x^{2}}} \mathrm{~d} x$
(ii) $\int \frac{1}{\sqrt{k-x^{2}}} \mathrm{~d} x$
(iii) $\int \frac{1}{\sqrt{k+2 x+x^{2}}} \mathrm{~d} x$
6. (i) Find $\int \frac{x^{m-1}}{\sqrt{x^{2 m}-1}} \mathrm{~d} x$.
(ii) Find similar results involving arsinh and artanh.
7. You are given artanh $x=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right)$ for all x and $\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\ldots$ for $|x|<1$.
(i) Write artanh x as $\frac{1}{2} \ln (1+\mathrm{f}(x))$ and expand this as far as the term in x^{3}.
(ii) Find the Maclaurin expansion of artanh x as far as the term in x^{3}, and compare this with your result from (i).
