

Section 2: The inverse hyperbolic functions

Exercise level 2

- 1. Evaluate the integral $\int \frac{\mathrm{d}x}{\sqrt{4x^2 16x + 32}}$.
- 2. (i) Given that $c \ge 1$ and $\cosh x = c$, show that $x = \pm \ln \left(c + \sqrt{c^2 1} \right)$.
 - (ii) Solve the equation $\sinh^2 x + 3\cosh x = 9$, giving the answers in an exact logarithmic form.

3. (i) Prove that arsinh
$$x = \ln\left(x + \sqrt{x^2 + 1}\right)$$
.

- (ii) Find $\int_0^2 \frac{1}{\sqrt{3x^2 + 4}} dx$, giving your answer in logarithmic form.
- 4. Using the substitution $2x = \sinh u$, find $\int_0^{\sqrt{2}} \sqrt{4x^2 + 1} \, dx$.
- 5. For each of the following integrals, give the method you would use for different sets of integers k. You do not need to find the integrals.
 - (i) $\int \frac{1}{\sqrt{k+x^2}} dx$ (ii) $\int \frac{1}{\sqrt{k-x^2}} dx$ (iii) $\int \frac{1}{\sqrt{k+2x+x^2}} dx$
- 6. (i) Find $\int \frac{x^{m-1}}{\sqrt{x^{2m}-1}} dx$.

- 7. You are given artanh $x = \frac{1}{2} \ln\left(\frac{1+x}{1-x}\right)$ for all x and $\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots$ for |x| < 1.
 - (i) Write artanh x as $\frac{1}{2}\ln(1+f(x))$ and expand this as far as the term in x^3 .
 - (ii) Find the Maclaurin expansion of artanh x as far as the term in x^3 , and compare this with your result from (i).

⁽ii) Find similar results involving arsinh and artanh.