Edexcel Further Maths Hyperbolic functions

Section 1: Introducing the hyperbolic functions

Exercise level2

1. (i) Starting from $\cosh x=\frac{1}{2}\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)$, show that $\cosh 2 x=2 \cosh ^{2} x-1$.
(ii) Show that the two stationary points on the curve $y=7 \sinh x-\sinh 2 x$ have y-coordinates $3 \sqrt{3}$ and $-3 \sqrt{3}$.
(iii) Show that $\int_{0}^{\ln 3}(7 \sinh x-\sinh 2 x) \mathrm{d} x=\frac{26}{9}$.
2. (i) Find $\int_{0}^{\ln a}(12 \cosh x-8 \sinh x) \mathrm{d} x$ in terms of a, simplifying your answer.
(ii) Solve the equation $12 \cosh x-8 \sinh x=9$, giving the answers in logarithmic form.
(iii) Show that $12 \cosh x-8 \sinh x \geq 4 \sqrt{5}$.
3. Show that $\sinh \left(\frac{A+B}{2}\right) \sinh \left(\frac{A-B}{2}\right)=\frac{1}{2} \cosh A-\frac{1}{2} \cosh B$.

Hence write $\cosh 4-\cosh 2$ in the form $k \sinh P \sinh Q$, where k, P and Q are to be found.
4. You are given $y=\mathrm{e}^{x} \sinh x$.
(i) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$
(a) by using the product rule
(b) by using the definition of $\sinh x$ and multiplying out.
(ii) Show that both methods give the same result.

