

Section 1: Introducing the hyperbolic functions

Exercise level 2

- 1. (i) Starting from $\cosh x = \frac{1}{2}(e^x + e^{-x})$, show that $\cosh 2x = 2\cosh^2 x 1$.
 - (ii) Show that the two stationary points on the curve $y = 7 \sinh x \sinh 2x$ have y-coordinates $3\sqrt{3}$ and $-3\sqrt{3}$.
 - (iii) Show that $\int_0^{\ln 3} (7 \sinh x \sinh 2x) dx = \frac{26}{9}$.
- 2. (i) Find $\int_{0}^{\ln a} (12\cosh x 8\sinh x) dx$ in terms of *a*, simplifying your answer.
 - (ii) Solve the equation $12\cosh x 8\sinh x = 9$, giving the answers in logarithmic form.
 - (iii) Show that $12\cosh x 8\sinh x \ge 4\sqrt{5}$.
- 3. Show that $\sinh\left(\frac{A+B}{2}\right)\sinh\left(\frac{A-B}{2}\right) = \frac{1}{2}\cosh A \frac{1}{2}\cosh B$.

Hence write $\cosh 4 - \cosh 2$ in the form $k \sinh P \sinh Q$, where k, P and Q are to be found.

- 4. You are given $y = e^x \sinh x$.
 - (i) Find $\frac{dy}{dx}$
 - (a) by using the product rule
 - (b) by using the definition of $\sinh x$ and multiplying out.
 - (ii) Show that both methods give the same result.

