## Edexcel Further Mathematics Maclaurin series <br> Section 1: Finding and using Maclaurin series

$\int$ "integralํ

## Exercise level 2

1. Find $\sqrt[3]{\mathrm{e}}$ using the Maclaurin expansion for $\mathrm{e}^{x}$ as far as the term in $x^{4}$. How many significant figures are sensible in your answer?
2. Find the Maclaurin expansion as far as the term in $x^{4}$ for

$$
y=\frac{2 \mathrm{e}^{x}+x}{\mathrm{e}^{x}} .
$$

3. Find the first four terms of the Maclaurin series for $\mathrm{e}^{x} \cos x$.
4. (i) Write down the Maclaurin expansions for $\cos \theta$ and $\sin \theta$ as far as the term in $\theta^{3}$.
(ii) Find the Maclaurin expansion for $\sin 2 \theta$
(a) from the expansion for $\sin \theta$ from (i)
(b) using the identity $\sin 2 \theta=2 \sin \theta \cos \theta$
5. (i) If $y=\frac{1}{(1-3 x)^{3}}$, find $y^{\prime}, y^{\prime \prime}$ and $y^{\prime \prime \prime}$.
(ii) Hence find the Maclaurin expansion of $y$ as far as the term in $x^{3}$.
(iii) By considering the binomial expansion of $(1-3 x)^{-3}$, state the range for $x$ for which this series is valid.
6. $\mathrm{f}(x)=\arctan x^{3}$
(i) Find $\mathrm{f}^{\prime}(x)$, and by expanding and then integrating the result, find the series expansion of $\mathrm{f}(x)$ as far as the term in $x^{21}$.
(ii) Check this using the Maclaurin series

$$
\arctan x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\ldots .
$$

stating the range of values of $x$ for which the expansion is valid.
7. Let $\mathrm{f}(x)=\arcsin \left(\frac{3}{5}+x\right)$.
(i) Find $\mathrm{f}^{\prime}(x)$ and $\mathrm{f}^{\prime \prime}(x)$.
(ii) Given that the Maclaurin series for $\mathrm{f}(x)$ begins

$$
\arcsin \frac{3}{5}+p x+q x^{2}+\ldots
$$

find $p$ and $q$.
(iii) Use this Maclaurin series to calculate an approximate value of $\int_{0}^{0.1} \mathrm{f}(x) \mathrm{d} x$, giving your answer to 4 decimal places.

