

Section 1: Finding and using Maclaurin series

Exercise level 2

- 1. Find $\sqrt[3]{e}$ using the Maclaurin expansion for e^x as far as the term in x^4 . How many significant figures are sensible in your answer?
- 2. Find the Maclaurin expansion as far as the term in x^4 for

$$y = \frac{2e^x + x}{e^x}$$

- 3. Find the first four terms of the Maclaurin series for $e^x \cos x$.
- 4. (i) Write down the Maclaurin expansions for $\cos \theta$ and $\sin \theta$ as far as the term in θ^3 .
 - (ii) Find the Maclaurin expansion for $\sin 2\theta$ (a) from the expansion for $\sin \theta$ from (i) (b) using the identity $\sin 2\theta = 2\sin\theta\cos\theta$

5. (i) If
$$y = \frac{1}{(1-3x)^3}$$
, find y', y'' and y'''.

- (ii) Hence find the Maclaurin expansion of y as far as the term in x^3 .
- (iii) By considering the binomial expansion of $(1-3x)^{-3}$, state the range for x for which this series is valid.
- 6. $f(x) = \arctan x^3$
 - (i) Find f'(x), and by expanding and then integrating the result, find the series expansion of f(x) as far as the term in x^{21} .
 - (ii) Check this using the Maclaurin series

$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots$$

stating the range of values of x for which the expansion is valid.

- 7. Let $f(x) = \arcsin(\frac{3}{5} + x)$.
 - (i) Find f'(x) and f''(x).
 - (ii) Given that the Maclaurin series for f(x) begins $\arcsin \frac{3}{5} + px + qx^2 + ...$

find p and q.

(iii) Use this Maclaurin series to calculate an approximate value of $\int_0^{0.1} f(x) dx$, giving your answer to 4 decimal places.

