Edexcel Further Mathematics Complex numbers "integral

Section 1: de Moivre's theorem

Section test

1. If $z=-1+\sqrt{3 i}$, what is the value of z^{6} ?
2. What is the value of $\left(\cos \frac{\pi}{6}+\mathrm{i} \sin \frac{\pi}{6}\right)^{12}$?
3. $\frac{1}{(\cos \theta+\mathrm{i} \sin \theta)^{6}}$ is the same as which of the following?
(a) $-\cos 6 \theta-i \sin 6 \theta$
(b) $\cos 6 \theta-\mathrm{i} \sin 6 \theta$
(c) $\cos 6 \theta+\mathrm{i} \sin 6 \theta$
(d) $-\cos 6 \theta+\mathrm{i} \sin 6 \theta$
4. How many roots does the equation $z^{5}-(1+2 \mathrm{i})=0$ have?
5. How many real roots does the equation $z^{8}-1=0$ have?
6. How many real roots does the equation $z^{7}-1=0$ have?
7. Which of the following cannot be the argument of a complex number z such that $z^{9}=-1+i$?
(a) $\frac{\pi}{12}$
(b) $\frac{29 \pi}{36}$
(c) $\frac{11 \pi}{36}$
(d) $\frac{19 \pi}{36}$
8. If w is a complex cube root of 1 , what is the value of $1+w^{4}+w^{8}$?
9. One of the following is a root of the equation $(z+1)^{4}=-16$. Which one?
(a) $\sqrt{2}+(\sqrt{2}-1) \mathrm{i}$
(b) $\sqrt{2}+\sqrt{2} \mathrm{i}$
(c) $\sqrt{2}-1+\sqrt{2} \mathrm{i}$
(d) $\sqrt{2}-1+(\sqrt{2}-1) \mathrm{i}$

Edexcel FM Complex numbers 1 section test solutions

10. Which of the diagrams below represents the set of complex numbers z such that $z^{3}=\mathrm{i}$? (the triangles are intended to be equilateral)
(a)

(b)

(c)

(d)

Edexcel FM Complex numbers 1 section test solutions

Solutions to section test

1. $z=-1+\sqrt{3 i}$
$|z|=\sqrt{1+3}=2 \Rightarrow\left|z^{6}\right|=2^{6}=64$
$\arg z=\tan ^{-1}(-\sqrt{3})=\frac{2 \pi}{3} \Rightarrow \arg z^{6}=6 \times \frac{2 \pi}{3}=4 \pi$
$z^{6}=64(\cos 4 \pi+i \sin 4 \pi)$
$=64$
2. $\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)^{12}=\cos \frac{12 \pi}{6}+i \sin \frac{12 \pi}{6}$

$$
\begin{aligned}
& =\cos 2 \pi+i \sin 2 \pi \\
& =1
\end{aligned}
$$

3. $\frac{1}{(\cos \theta+i \sin \theta)^{6}}=(\cos \theta+i \sin \theta)^{-6}$

$$
\begin{aligned}
& =\cos (-6 \theta)+i \sin (-6 \theta) \\
& =\cos 6 \theta-i \sin 6 \theta
\end{aligned}
$$

4. This equation is of degree 5 , so it has 5 roots.
5. The roots of this equation form a regular octagon in the Argand diagram. Two of these lie on the real axis, $z=1$ and $z=-1$.
so the equation has two real solutions.
6. The roots of this equation form a regular heptagon in the Argand diagram. The only root which lies on the real axis is $z=1$.
so the equation has just one real solution.
7. $\arg (-1+i)=\tan ^{-1}(-1)=\frac{3 \pi}{4}$

The $g^{\text {th }}$ roots of $(-1+i)$ have arguments given by

$$
\frac{1}{9}\left(\frac{3 \pi}{4}+2 r \pi\right)=\frac{(3+8 r) \pi}{36} \text { for } r=0,1, \ldots 8
$$

$\frac{29 \pi}{36}$ does not satisfy this formula, so it cannot be the argument of z.

Edexcel FM Complex numbers 1 section test solutions

8. $1+w^{4}+w^{8}=1+w^{3} w+\left(w^{3}\right)^{2} w^{2}$

$$
\begin{aligned}
& =1+w+w^{2} \\
& =0
\end{aligned}
$$

since the sum of the roots of a complex number add up to 0 .
9. $(z+1)^{4}=-16=16(\cos \pi+i \sin \pi)$

$$
\begin{aligned}
& z+1=2\left(\cos \frac{(2 r+1) \pi}{4}+i \sin \frac{(2 r+1) \pi}{4}\right) \\
& \begin{array}{c}
z=-1+2 \cos \frac{(2 r+1) \pi}{4}+2 i \sin \frac{(2 r+1) \pi}{4} \\
\text { When } r=0, z=-1+2 \cos \frac{\pi}{4}+2 i \sin \frac{\pi}{4} \\
\\
=-1+\sqrt{2}+\sqrt{2 i}
\end{array}
\end{aligned}
$$

10. One of the cube roots of i is $-i$, since $(-i)^{3}=-1 \times-i=i$.

The cube roots of i therefore form an equilateral triangle with one of the vertices at the point $(0,-1)$.

