

Section 1: de Moivre's theorem

Section test

- 1. If $z = -1 + \sqrt{3}i$, what is the value of z^6 ?
- 2. What is the value of $\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)^{12}$?
- 3. $\frac{1}{(\cos\theta + i\sin\theta)^6}$ is the same as which of the following? (a) $-\cos 6\theta - i\sin 6\theta$ (b) $\cos 6\theta - i\sin 6\theta$ (c) $\cos 6\theta + i\sin 6\theta$ (d) $-\cos 6\theta + i\sin 6\theta$
- 4. How many roots does the equation $z^5 (1+2i) = 0$ have?
- 5. How many **real** roots does the equation $z^8 1 = 0$ have?
- 6. How many **real** roots does the equation $z^7 1 = 0$ have?
- 7. Which of the following cannot be the argument of a complex number *z* such that $z^9 = -1 + i$?
- (a) $\frac{\pi}{12}$ (b) $\frac{29\pi}{36}$ (c) $\frac{11\pi}{36}$ (d) $\frac{19\pi}{36}$
- 8. If *w* is a complex cube root of 1, what is the value of $1 + w^4 + w^8$?
- 9. One of the following is a root of the equation $(z+1)^4 = -16$. Which one? (a) $\sqrt{2} + (\sqrt{2}-1)i$ (b) $\sqrt{2} + \sqrt{2}i$ (c) $\sqrt{2} - 1 + \sqrt{2}i$ (d) $\sqrt{2} - 1 + (\sqrt{2}-1)i$

Edexcel FM Complex numbers 1 section test solutions

10. Which of the diagrams below represents the set of complex numbers z such that $z^3 = i$? (the triangles are intended to be equilateral)

Solutions to section test

1.
$$z = -1 + \sqrt{3}i$$

 $|z| = \sqrt{1+3} = 2 \implies |z^{e}| = 2^{e} = 64$
 $\arg z = \tan^{-1}(-\sqrt{3}) = \frac{2\pi}{3} \implies \arg z^{e} = 6 \times \frac{2\pi}{3} = 4\pi$
 $z^{e} = 64(\cos 4\pi + i\sin 4\pi)$
 $= 64$

2.
$$\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)^{12} = \cos\frac{12\pi}{6} + i\sin\frac{12\pi}{6}$$
$$= \cos 2\pi + i\sin 2\pi$$
$$= 1$$

3.
$$\frac{1}{(\cos\theta + i\sin\theta)^{6}} = (\cos\theta + i\sin\theta)^{-6}$$
$$= \cos(-6\theta) + i\sin(-6\theta)$$
$$= \cos6\theta - i\sin6\theta$$

- 4. This equation is of degree 5, so it has 5 roots.
- 5. The roots of this equation form a regular octagon in the Argand diagram. Two of these lie on the real axis, z = 1 and z = -1. So the equation has two real solutions.
- 6. The roots of this equation form a regular heptagon in the Argand diagram. The only root which lies on the real axis is z = 1. So the equation has just one real solution.
- 7. $\arg(-1+i) = \tan^{-1}(-1) = \frac{3\pi}{4}$

The 9^{th} roots of (-1 + i) have arguments given by

$$\frac{1}{9} \left(\frac{3\pi}{4} + 2r\pi \right) = \frac{(3+8r)\pi}{36} \text{ for } r = 0, 1, \dots 8.$$

$$\frac{29\pi}{36} \text{ does not satisfy this formula, so it cannot be the argument of } z.$$

Edexcel FM Complex numbers 1 section test solutions

8.
$$1 + w^4 + w^8 = 1 + w^3 w + (w^3)^2 w^2$$

$$=1+w+w^{2}$$

since the sum of the roots of a complex number add up to 0.

9.
$$(z+1)^4 = -16 = 16(\cos \pi + i \sin \pi)$$

 $z+1 = 2\left(\cos \frac{(2r+1)\pi}{4} + i \sin \frac{(2r+1)\pi}{4}\right)$
 $z = -1 + 2\cos \frac{(2r+1)\pi}{4} + 2i \sin \frac{(2r+1)\pi}{4}$
When $r = 0$, $z = -1 + 2\cos \frac{\pi}{4} + 2i \sin \frac{\pi}{4}$
 $= -1 + \sqrt{2} + \sqrt{2}i$

10. One of the cube roots of í ís -í, sínce (-í)³ = -1 × -í = í. The cube roots of í therefore form an equilateral triangle with one of the vertices at the point (0, -1).