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Section 2: Applications of de Moivre’s theorem

Notes and Examples

These notes contain subsections on:
e Using de Moivre’s theorem to find trigonometric identities
e The exponential form of a complex number
e Using complex numbers to sum real series

Using de Moivre’s theorem to find trigonometric identities

de Moivre’s theorem can be used to give a multiple angle formula in terms of powers
and to express powers of sine and cosine in terms of multiple angles. This can be
very useful in integration.

n -n n -Nn

2"+z
and cosn@ =

. » . z
In the example below, the identities sinnd = are used

2i
frequently. You should be happy with these identities and be able to derive them as
follows:

2" =cosn@+isinnd
z"=cosnd—isinnd

n -n

Z +Z

Adding: z2"+z"=2cosnf = cosnd=

n

Subtracting: z"-z"=-2isinnd = sinnd=

Example 1
Q) Express sin® @ in terms of multiple angles

(i)  Hence find fsinG 6do .

Solution —
n -n —
: . : 2" -1 . =
(i) Z=c0sO+isingd =>sinnd = = 2ising=z-z"
[

So ®sin® @ = ( )
=72°-62°21+1522%-202°2°% +152°2* -62z° +z°
=72°-6z*+1522-20+1522-62"*+2"°
:z6+z’6—6(z4+z’4)+15(22+z’2)—20
= >
=2c0s60-12cos40 +30cos 28 —20

using z"+z" =2cosn@ for
n =6, 4 and 2 respectively

Therefore: —64sin® @ =2c0s66 —12cos40 +30cos26 —20 .
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20—-2cos68+12cos46 —30cos 26

= sin® @ =
64
_10-cos66 +6cos46—15c0s 20
32
(i) jsin69 d¢9:I(10_0056H+6C0349_15C0320j 40
32
1 1

=—11060—-=sin 66’+§sin 46’—Esin 20 |+c¢
32 6 4 2

= 19i2(609—sin 660 +9sin 40 —45sin 20)+c

The exponential form of a complex number

The idea of raising a number to a power which is a natural number is very familiar to
you. It just means multiply that number by itself the specified number of times. For
negative numbers and for rational numbers you have interpretations too (using
reciprocals and roots). The idea of raising a number to the power of a complex
number does not seem like a natural thing to do. Whichever way this is interpreted, it
should have properties which are consistent with the ones that you are familiar with
for rational numbers.

Using the Maclaurin expansion for e* and putting x=i6 leads to the result
e’ =cos@+ising.

This may seem a surprising result, but try not to let any concerns you have about the
reason for making this definition get in the way of your ability to do questions. Once
you have seen the power of this definition you will forget any worries you had about
where it came from (this is also true of its acceptance historically in mathematics).

A particularly interesting result comes from putting 8 = . This gives
e” =cosz+isinz
=-1
This famous equation is sometimes called Euler's equation. It links the irrational
numbers 7 and e, along with the imaginary number i, giving the simple result of -1.

Using €'’ =cos@+isin @, you can express a complex number z =r(cosd+ising) as

z=¢". This is called the exponential form of the complex number. Like the modulus-
argument form, it expresses the complex number in terms of its modulus and
argument, but the exponential form is more compact and can be easy to work with in
some situations, since you can easily apply the laws of indices.

Sometimes you might be asked to prove trig identities which have been given in
terms of the definition €'’ =cos@+isin@. Here is an example of this.
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Example 1
Prove that 1—e'’ cos@ = —ie'? sin@.

Expand the left hand side

Solution _ o 0
using the definition of € .

1-€" cos@ =1—(cos@+isin&)cos o
=1-cos’@—isindcosé OOO
=sin’@—isingcosd < OO
=sing(sin@—icos6)
=sing| —i(cosO+isin o) ]|

Since the right hand side has a
factor of SIin @, it seems

sensible to replace 1—cos” @
with sin® 4.

= —isin ge"
as required.

Other examples of identities like this one include

(1+ e‘g)(l+ e"‘g) =2+2c0s6
(2+e”’)(2+e‘"’):5+4cose

1+€" = 2072 cosg

1-e" = 2ie2 sin g

Try proving some of these for yourself. To do this you will need to use identities such
as 1+cos2a =2cos’ a and sin2a =2cosasinga .

Using complex numbers to sum real series.

Consider the sum

n n n n
1+( JcosHJr( Jc0529+...+( jcos[(n—1)9]+[ Jcosn@.
1 2 n-1 n

This sum is not an arithmetic series, it is not a geometric series, nor is it a binomial
series. However, in Example 2 below, complex numbers will be used to show that it

is equal to
( 9)“ né
2C0S— | COS—.
2 2

Similarly, it is not immediately clear that the series

singd sin2¢ sin30 sin40
——— 7t
2 2 2 2
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can be dealt with using the techniques that we have learnt so far. It is shown in
Example 3, using complex numbers, that the sum of this series is

2sin@
5+4coséd

In both examples, the strategy is the same:

e introduce some complex terms so that the given summation becomes the real or
imaginary part of an arithmetic, geometric or binomial series. Then, using the
familiar formulae for these types of sums, find an expression for the (usually
complex) value of this new summation. In both examples below, De Moivre’s

Theorem, that (cos@+ising)" =cosnd+isinng, or (e“g)n =e" | is used.

e manipulate this expression to express it as a single complex number. In both of
the examples below, some of this algebraic manipulation is dealt with in the first
part of the question.

e equate real or imaginary parts to give the value of the original summation.

Example 2

(i) Using the identities 1+ cos2a = 2¢os” & and sin 2« = 2cosasina , prove that
i0
1+e"% =2e? cos .

. n n n n
(i) Let C=1+| |cos@+| |cos20+...+ cos[(n—-1)0]+| |cosnd.
1 2 n-1 n
By considering C +iS , where

ny . ny . n . ny .
S:( ]sm9+( ]sm29+...+[ ]sm[(n—l)H]Jr( ]smne
1 2 n-1 n

show that C:(Zcosgj cos%.

The identityl+ c0s 2a = 2¢0S? &

Soluti giVGSl‘i‘COSH:ZCOSZg
olution
(i) 1+e’=1+cos@+ising = <— _

20 . 0 .0
=2c0s §+2lcos—sm— —
,

0 ..
=2| COS—+1SINn— |[COS—
[ 2 2) 2

The identity Sin2a =2cosasSina

i0

. . 0 . 0
i0 0 givessin @ = 2cos—sin—
=2e? cosE 2 2
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(i) C+iS={1+(njcose+(nJcosze+...+( " jcos[(n—l)H]Jr(njcoan}
1 2 n-1 n
(N .. nj . n . ny .
+|K ]sm9+( ]S|n2¢9+...+( ]sm[(n—1)9]+( jsm ne}
1 2 n-1 n

n . n .
:1+(1j(cose+|sm 6’)+(2](c052(9+|sm 20)+..

+(nr1J(cos[(n ~1)o]+isin[(n —1)6?]){”)(005 n@+isinng)

n

:1+(:j(cose+isin 9)+(gj(cose+isin 0)2 +...

+(nn 1J(cos@ﬂsin )" +(:J(cose+isin 0)"

=1+(”j @(ewf+...+(an(ew)”‘l{:](ew)"

using de Moivre’s
theorem

Using the answer to part (i) gives
C+iS =(1+€")

i0 n
:(Zezcosgl
2
( 0 .. 0)”( 9)”
=2"| coS—+ISin— | | coS—
2 2 2
( ng . . nej( ej”
=2"| coS—+isin— || cos— | .
2 2 2

Equating the real parts of the equation above gives C = (2 cosgj cos7.

né

Example 3
(i) Show that (2+€")(2+e"")=5+4cos6.
sin@ sin20 sin30 sin4d

- 22 + 23 - 24 +

(ii) Let S =

cosd cos260 cos3¢ cos4dl
+ - + —.

By considering C —iS where C =1— 2 e 4
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2sin@

showthat S=——.
5+4cos@

Solution
(i) (2+€”)(2+e™)=4+2e"+2e" +e'%e ™

=5+ 2(e‘9 +e‘i5)
=5+2[(cosd+isin#)+(cos(-0) +isin(-0)) |

=5+2(cos@+isin@+cosf—isino)

2

=5+2x(2c0s0)
=5+4co0sé6.
(ii) C_iszl_cose_.5|n0+c0522¢9 .S|n22¢9_c05339_ism339+m
2 2 2 2 2
cos@+isind (c0520+isin20j (cos3¢9+isin36’
=1- + — +
2 22 28
cos@+isin@) (cos@+ising)” (cos@+isind)
=1- + — +
2 22 28
cos@+ising (cose+isin6? ? (cost9+isin6?j3
=1- > + — +

This is just a geometric
series with first term 1 and

i0
common ratio —7

using the standard result that the sum of an infinite
geometric progression with first term a and common ration
a ei@
ris —,witha=1and r =———. Note |r|<1 is
1-r 2
required for the series to converge, check you are happy
i0
that this is the case for I = —7 )

Using part (i):
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2+e
(2 2+e™"
2+e )l 2+
_ 4+2e7"
S5+4cosd
_4+2cosf—2ising
5+4cosé
Equating imaginary parts gives S = ﬂ
S5+4cosd
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