Edexcel Further Mathematics Complex numbers

Section 2: Applications of de Moivre's theorem

Exercise level 3

1. If $p \cos 5 \theta+q \cos 3 \theta+r \cos \theta \equiv \cos ^{5} \theta+\cos ^{3} \theta+\cos \theta$, find p, q and r.
2. Show that $\cos n \theta=\frac{z^{n}+z^{-n}}{2}$, where $z=\cos \theta+\mathrm{i} \sin \theta$, and find the corresponding identity for $\sin n \theta$. Hence show that $\cos n \theta \times \sin m \theta=\frac{1}{2} \sin (n+m) \theta+\frac{1}{2} \sin (m-n) \theta$.
3. Find $\sum_{k=0}^{n}{ }^{n} C_{r} \cos (a+b k)$.
4. Find all the solutions to $\mathrm{e}^{z}=1-\mathrm{i}$ in the form $z=x+\mathrm{i} y$.
5. (i) Plot the solutions to $\mathrm{e}^{z}=\mathrm{e}^{3+i}$ that are near the origin.
(ii) Plot the solutions to $|z|=3$ on your diagram.
(iii) Research the difference between an algebraic and a transcendental number.
(iv) Let $\mathrm{S}=\left\{\right.$ solutions to $\left.\mathrm{e}^{z}=\mathrm{e}^{p+q i}, p, q \in \mathbb{Z}\right\}$
and let $\mathrm{R}=\{$ solutions to $|z|=k, k \in \mathbb{N}\}$
Show that the only points z in both S and R have $\operatorname{Im}(z) \in \mathbb{Z}$.
(e.g. $\mathrm{e}^{z}=\mathrm{e}^{3+4 \mathrm{i}}$ has a solution lying on $|z|=5$).
6. In this question you will look at solving the equation $\mathrm{e}^{z}=z^{\mathrm{e}}$. (Note: $z=\mathrm{e}$ is one root).
(i) Show that if $z=x+\mathrm{i} y$, then the LHS of the equation is $\mathrm{e}^{x} \mathrm{e}^{\mathrm{i} y}$.
(ii) If $z=r \mathrm{e}^{\mathrm{i} \theta}$, show that the RHS of the equation is $r^{\mathrm{e}} \mathrm{e}^{\mathrm{i} \theta \mathrm{e}}$.
(iii) By putting $x=r \cos \theta, y=r \sin \theta$ and eliminating r, show that θ satisfies the equation

$$
\mathrm{e}^{(\mathrm{e} \theta-2 n \pi) \cot \theta}-\left(\frac{\mathrm{e} \theta-2 n \pi}{\sin \theta}\right)^{\mathrm{e}}=0
$$

(iv) By using graphing software, find the solution to $\mathrm{e}^{z}=z^{\mathrm{e}}$ when $n=1$.
7. (i) Show $1-\mathrm{e}^{\frac{2 n \pi}{3} \mathrm{i}}=-2 \mathrm{i}^{\frac{n \pi}{3} \mathrm{i}} \sin \frac{n \pi}{3}$ and $1+\mathrm{e}^{\frac{2 n \pi}{3} \mathrm{i}}=2 \mathrm{e}^{\frac{n \pi}{3} \mathrm{i}} \cos \frac{n \pi}{3}$.
(ii) Solve $(z+1)^{3}=(z-1)^{3}$ by multiplying out the brackets.
(iii) Solve $(z+1)^{3}=(z-1)^{3}$ by considering $\left(\frac{z+1}{z-1}\right)^{3}=1$.

Compare your answers.

Edexcel FM Complex numbers 2 Exercise

8. (i) Show that $1+\mathrm{e}^{\mathrm{i} \theta}=2 \cos \frac{\theta}{2} \mathrm{e}^{\mathrm{i} \frac{2}{2}}$ and $-1+\mathrm{e}^{\mathrm{i} \theta}=2 \mathrm{i} \sin \frac{\theta}{2} \mathrm{e}^{\frac{\mathrm{i}}{2}}$.
(ii) The complex numbers $0,1, z_{1}$ and z_{2} form a rhombus. Prove using geometrical complex number methods, that α is a right angle,
(iii) Prove using geometrical complex number methods that the angle in a semicircle is 90°.

