

Section 2: Applications of de Moivre's theorem

Exercise level 3

- 1. If $p\cos 5\theta + q\cos 3\theta + r\cos \theta \equiv \cos^5 \theta + \cos^3 \theta + \cos \theta$, find p, q and r.
- 2. Show that $\cos n\theta = \frac{z^n + z^{-n}}{2}$, where $z = \cos \theta + i \sin \theta$, and find the corresponding identity for $\sin n\theta$. Hence show that $\cos n\theta \times \sin m\theta = \frac{1}{2}\sin(n+m)\theta + \frac{1}{2}\sin(m-n)\theta$.
- 3. Find $\sum_{k=0}^{n} {}^{n}C_{r} \cos(a+bk)$.
- 4. Find all the solutions to $e^{z} = 1 i$ in the form z = x + iy.
- 5. (i) Plot the solutions to $e^z = e^{3+i}$ that are near the origin.
 - (ii) Plot the solutions to |z| = 3 on your diagram.
 - (iii) Research the difference between an algebraic and a transcendental number.
 - (iv) Let S = {solutions to $e^z = e^{p+qi}$, $p, q \in \mathbb{Z}$ } and let R = {solutions to |z| = k, $k \in \mathbb{N}$ } Show that the only points *z* in both S and R have Im(*z*) $\in \mathbb{Z}$. (e.g. $e^z = e^{3+4i}$ has a solution lying on |z| = 5).
- 6. In this question you will look at solving the equation $e^z = z^e$. (Note: z = e is one root).
 - (i) Show that if z = x + iy, then the LHS of the equation is $e^{x}e^{iy}$.
 - (ii) If $z = re^{i\theta}$, show that the RHS of the equation is $r^e e^{i\theta}$.
 - (iii) By putting $x = r \cos \theta$, $y = r \sin \theta$ and eliminating *r*, show that θ satisfies the equation

$$e^{(e\theta-2n\pi)\cot\theta} - \left(\frac{e\theta-2n\pi}{\sin\theta}\right)^e = 0.$$

(iv) By using graphing software, find the solution to $e^{z} = z^{e}$ when n = 1.

7. (i) Show
$$1 - e^{\frac{2n\pi}{3}i} = -2ie^{\frac{n\pi}{3}i} \sin \frac{n\pi}{3}$$
 and $1 + e^{\frac{2n\pi}{3}i} = 2e^{\frac{n\pi}{3}i} \cos \frac{n\pi}{3}$.

(ii) Solve $(z+1)^3 = (z-1)^3$ by multiplying out the brackets.

(iii) Solve
$$(z+1)^3 = (z-1)^3$$
 by considering $\left(\frac{z+1}{z-1}\right)^3 = 1$.

Compare your answers.

Mathematics® Education Innovation

Edexcel FM Complex numbers 2 Exercise

- 8. (i) Show that $1 + e^{i\theta} = 2\cos\frac{\theta}{2}e^{\frac{i\theta}{2}}$ and $-1 + e^{i\theta} = 2i\sin\frac{\theta}{2}e^{\frac{i\theta}{2}}$.
 - (ii) The complex numbers 0, 1, z_1 and z_2 form a rhombus. Prove using geometrical complex number methods, that α is a right angle,
 - (iii) Prove using geometrical complex number methods that the angle in a semicircle is 90°.

