Edexcel Further Mathematics Complex numbers

Section 2: Applications of de Moivre's theorem

Exercise level 2

1. (i) Find $\cos 3 \theta$ and $\sin 3 \theta$ as polynomials in $\cos \theta$ and $\sin \theta$ respectively.
(ii) Using $\tan 3 \theta=\frac{\sin 3 \theta}{\cos 3 \theta}$, write $\tan 3 \theta$ in terms of $\tan \theta$.
2. Show that $\cos n \theta=\frac{z^{n}+z^{-n}}{2}$ and $\sin n \theta=\frac{z^{n}-z^{-n}}{2 \mathrm{i}}$, where $z=\cos \theta+\mathrm{i} \sin \theta$.

Hence deduce that $2 \cos (n \theta) \sin (n \theta)=\sin (2 n \theta)$.
3. Express $\sin 5 \theta$ in terms of powers of $\sin \theta$.
4. Express $\cos ^{5} \theta \sin ^{2} \theta$ in terms of cosines of multiples of θ.
5. (i) Express $\mathrm{e}^{\mathrm{i} k \theta}$ and $\mathrm{e}^{-\mathrm{i} k \theta}$ in the form $a+\mathrm{i} b$, and show that

$$
\mathrm{e}^{2 \mathrm{i} \theta}-1=2 \mathrm{ie}^{\mathrm{i} \theta} \sin \theta
$$

Series C and S are defined by

$$
\begin{aligned}
& C=\cos \theta+\cos 3 \theta+\cos 5 \theta+\ldots+\cos (2 n-1) \theta \\
& S=\sin \theta+\sin 3 \theta+\sin 5 \theta+\ldots+\sin (2 n-1) \theta
\end{aligned}
$$

where n is a positive integer and $0<\theta<\frac{\pi}{n}$.
(ii) Show that $C+\mathrm{i} S$ is a geometric series, and write down the sum of this series.
(iii) Show that $|C+\mathrm{i} S|=\frac{\sin n \theta}{\sin \theta}$, and find $\arg (C+\mathrm{i} S)$.
(iv) Find C and S.
6. In this question, k and θ are real numbers with $0<k<1$ and $0<\theta<\frac{1}{2} \pi$.
(i) Express $\left(1-k \mathrm{e}^{\mathrm{i} \theta}\right)\left(1-k \mathrm{e}^{-\mathrm{i} \theta}\right)$ in trigonometric form.

Infinite series C and S are defined by

$$
\begin{aligned}
& C=k \cos \theta+k^{2} \cos 2 \theta+k^{3} \cos 3 \theta+\ldots \\
& S=k \sin \theta+k^{2} \sin 2 \theta+k^{3} \sin 3 \theta+\ldots
\end{aligned}
$$

(ii) Show that $C+\mathrm{i} S$ is an infinite geometric series.
(iii) By finding the sum of this series, show that $C=\frac{k \cos \theta-k^{2}}{1-2 k \cos \theta+k^{2}}$ and find a similar expression for S.
(iv) Given that $C=0$, show that $S=\cot \theta$.
7. (i) Express in a simplified trigonometric form
(a) $\mathrm{e}^{\mathrm{i} \theta}+\mathrm{e}^{-\mathrm{i} \theta}$
(b) $\left(1-3 \mathrm{e}^{\mathrm{i} \theta}\right)\left(1-3 \mathrm{e}^{-\mathrm{i} \theta}\right)$

Edexcel FM Complex numbers 2 Exercise

(ii) Series C and S are defined by

$$
\begin{aligned}
& C=\cos \theta+3 \cos 2 \theta+9 \cos 3 \theta+\ldots+3^{n-1} \cos n \theta \\
& S=\sin \theta+3 \sin 2 \theta+9 \sin 3 \theta+\ldots+3^{n-1} \sin n \theta
\end{aligned}
$$

Show that $C=\frac{\cos \theta+3^{n+1} \cos n \theta-3^{n} \cos (n+1) \theta-3}{10-6 \cos \theta}$ and find a similar expression for S.
8. (i) Show that $\left(1-\frac{\mathrm{e}^{\mathrm{i} \theta}}{2}\right)\left(1-\frac{\mathrm{e}^{-\mathrm{i} \theta}}{2}\right)=\frac{5}{4}-\cos \theta$
(ii) If $C=\cos \theta+\frac{\cos 2 \theta}{2}+\frac{\cos 3 \theta}{4}+\ldots$
and $S=\sin \theta+\frac{\sin 2 \theta}{2}+\frac{\sin 3 \theta}{4}+\ldots$
where these are infinite series, find C and S by considering $C+\mathrm{i} S$.
9. (i) Show that $1+\mathrm{e}^{3 i \theta}=2 \cos \left(\frac{3 \theta}{2}\right) \mathrm{e}^{\frac{3 \mathrm{i}}{} \mathrm{i}^{i}}$.
(ii) Find $C=1+\binom{n}{1} \cos 3 \theta+\binom{n}{2} \cos 6 \theta+\ldots+\binom{n}{n} \cos 3 n \theta$
and the corresponding sum for $\sin \theta$.
10. (i) Write $z=1+\sqrt{3} i$ in the form $r \mathrm{e}^{\mathrm{i} \theta}$.
(ii) Find the $5^{\text {th }}$ roots of z in the form $r \mathrm{e}^{\mathrm{i} \theta}$. Show these on an Argand diagram, along with z.
(iii) Two of these roots, z_{1} and z_{2}, appear in the same quadrant. Let $w=\frac{z_{1}+z_{2}}{2}$.

What is the smallest value of n so that w^{n} is real?
(You are given that $1+\mathrm{e}^{2 \mathrm{i} \theta}=2 \mathrm{e}^{\mathrm{i} \theta} \cos \theta$).

