

Section 2: Applications of de Moivre's theorem

Exercise level 2

- 1. (i) Find $\cos 3\theta$ and $\sin 3\theta$ as polynomials in $\cos \theta$ and $\sin \theta$ respectively. (ii) Using $\tan 3\theta = \frac{\sin 3\theta}{\cos 3\theta}$, write $\tan 3\theta$ in terms of $\tan \theta$.
- 2. Show that $\cos n\theta = \frac{z^n + z^{-n}}{2}$ and $\sin n\theta = \frac{z^n z^{-n}}{2i}$, where $z = \cos \theta + i \sin \theta$. Hence deduce that $2\cos(n\theta)\sin(n\theta) = \sin(2n\theta)$.
- 3. Express $\sin 5\theta$ in terms of powers of $\sin \theta$.
- 4. Express $\cos^5 \theta \sin^2 \theta$ in terms of cosines of multiples of θ .

5. (i) Express
$$e^{ik\theta}$$
 and $e^{-ik\theta}$ in the form $a + ib$, and show that $e^{2i\theta} - 1 = 2ie^{i\theta} \sin \theta$.

Series C and S are defined by

$$C = \cos\theta + \cos 3\theta + \cos 5\theta + \dots + \cos(2n-1)\theta$$

 $S = \sin\theta + \sin 3\theta + \sin 5\theta + \dots + \sin(2n-1)\theta$

where *n* is a positive integer and $0 < \theta < \frac{\pi}{n}$.

- (ii) Show that C + iS is a geometric series, and write down the sum of this series.
- (iii) Show that $|C + iS| = \frac{\sin n\theta}{\sin \theta}$, and find $\arg(C + iS)$.
- (iv) Find C and S.
- 6. In this question, k and θ are real numbers with 0 < k < 1 and $0 < \theta < \frac{1}{2}\pi$.
 - (i) Express $(1-ke^{i\theta})(1-ke^{-i\theta})$ in trigonometric form.
 - Infinite series *C* and *S* are defined by
 - $C = k\cos\theta + k^2\cos 2\theta + k^3\cos 3\theta + \dots$

$$S = k\sin\theta + k^2\sin 2\theta + k^3\sin 3\theta + \dots$$

- (ii) Show that C + iS is an infinite geometric series.
- (iii) By finding the sum of this series, show that $C = \frac{k\cos\theta k^2}{1 2k\cos\theta + k^2}$ and find a similar expression for *S*.
- (iv) Given that C = 0, show that $S = \cot \theta$.
- 7. (i) Express in a simplified trigonometric form (a) $e^{i\theta} + e^{-i\theta}$ (b) $(1-3e^{i\theta})(1-3e^{-i\theta})$

ME	Mathematics® Education Innovation
----	---

Edexcel FM Complex numbers 2 Exercise

(ii) Series C and S are defined by

$$C = \cos \theta + 3\cos 2\theta + 9\cos 3\theta + ... + 3^{n-1}\cos n\theta$$

$$S = \sin \theta + 3\sin 2\theta + 9\sin 3\theta + ... + 3^{n-1}\sin n\theta$$
Show that $C = \frac{\cos \theta + 3^{n+1}\cos n\theta - 3^n\cos(n+1)\theta - 3}{10 - 6\cos \theta}$
and find a similar expression for S.

8. (i) Show that
$$\left(1 - \frac{e^{i\theta}}{2}\right) \left(1 - \frac{e^{-i\theta}}{2}\right) = \frac{5}{4} - \cos\theta$$

(ii) If $C = \cos\theta + \frac{\cos 2\theta}{2} + \frac{\cos 3\theta}{4} + \dots$
and $S = \sin\theta + \frac{\sin 2\theta}{2} + \frac{\sin 3\theta}{4} + \dots$

where these are infinite series, find C and S by considering C + iS.

9. (i) Show that
$$1 + e^{3i\theta} = 2\cos\left(\frac{3\theta}{2}\right)e^{\frac{3}{2}i\theta}$$
.

(ii) Find
$$C = 1 + \binom{n}{1} \cos 3\theta + \binom{n}{2} \cos 6\theta + \dots + \binom{n}{n} \cos 3n\theta$$

and the corresponding sum for sin θ

and the corresponding sum for $\sin \theta$.

- 10. (i) Write $z = 1 + \sqrt{3}i$ in the form $re^{i\theta}$.
 - (ii) Find the 5th roots of z in the form $re^{i\theta}$. Show these on an Argand diagram, along with z.

(iii) Two of these roots, z_1 and z_2 , appear in the same quadrant. Let $w = \frac{z_1 + z_2}{2}$.

What is the smallest value of *n* so that w^n is real? (You are given that $1 + e^{2i\theta} = 2e^{i\theta} \cos \theta$).