Edexcel Further Mathematics Complex numbers

Section 2: Applications of de Moivre's theorem

Exercise level 1

1. Given $(\cos \theta+\mathrm{i} \sin \theta)^{n}=\cos (n \theta)+\mathrm{i} \sin (n \theta)$, deduce identities for $\cos 2 \theta$ and $\sin 2 \theta$ in terms of $\cos \theta$ and $\sin \theta$.
2. Express the following in the form $r \mathrm{e}^{\mathrm{i} \theta}$.
(i) $2+2 \mathrm{i}$
(ii) $5-5 \sqrt{3} \mathrm{i}$
3. If $\mathrm{e}^{z}=x+\mathrm{i} y$, find x and y in each of the following cases:
(i) $z=\frac{2 \pi \mathrm{i}}{3}$
(ii) $z=2+\frac{\pi \mathrm{i}}{3}$
(iii) $z=-2-\frac{\pi \mathrm{i}}{3}$
(iv) $z=3+2 \mathrm{i}$
4. Pick two numbers from the bag (no repeats) and put them into the boxes.

$$
z=\square \mathrm{e}^{\square \mathrm{i}}
$$

How many different complex numbers can you make?
Show each of the numbers on an Argand diagram.
Join up the points to make a convex polygon (i.e. all interior angles are less than 180°). Find the area of the polygon.
5. Write the roots of $z^{6}=-64$
(i) in the form $r \mathrm{e}^{\mathrm{i} \theta}$
(ii) in the $a+\mathrm{i} b$ form.
6. (i) Find the square roots of $3+4 \mathrm{i}$ in the form $a+b \mathrm{i}$.
(ii) Write $3+4 \mathrm{i}$ in the form $r \mathrm{e}^{\mathrm{i} \theta}$, and find the square roots in this form.
(iii) Check that your answers agree.

