

Section 1: de Moivre's theorem

Exercise level 3

- (i) Find the smallest positive root of cos⁴ x = cos 4x.
 (ii) Show the smallest positive root of sin⁴ x = sin 4x occurs when tan³ x + 4 tan² x 4 = 0 has its smallest positive root, given that this root is between 0 and π/2.
- 2. (i) Give a complex number z_1 so that z_1 is not real but z_1^7 is real.
 - (ii) Give a complex number z_2 so that z_2 is not pure imaginary but z_2^5 is pure imaginary.
 - (iii) Show that there is no complex number z_3 so that z_3^7 is real and z_3^5 is pure imaginary.
- 3. A square has its centre at a + bi, and one vertex at b + ai. Find the other three vertices. What do the four vertices add up+ to?
- 4. You are given $\alpha = 3 + 4i$. Draw the circle in the Argand diagram given by $|z| = |\alpha|$. If $\beta = \alpha^3$, show the cube roots of β on your diagram and label them A, B, C. If P is at the point 2α , find the value of PA × PB × PC
 - (i) by using the cosine rule
 - (ii) by using $|z|^2 = zz^*$.

