

Section 1: de Moivre's theorem

Exercise level 2

1. (i) Write $\sqrt{3} + i$ in polar form and hence find $(\sqrt{3} + i)^{10}$ in the form a + ib.

You are given
$$z_1 = (\sqrt{3} - 4i)^5$$
, $z_2 = (\sqrt{4} - 5i)^3$, $z_3 = (\sqrt{5} - 3i)^4$

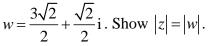
(ii) Which of z_1 , z_2 and z_3 has the largest modulus?

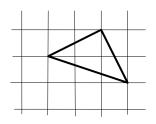
(iii)Which of z_1 , z_2 and z_3 has the largest principal argument?

- 2. In this question, give all answers in an exact form, with arguments in radians between $-\pi$ and π .
 - (i) Find the modulus and argument of 2 2i.
 - (ii) Hence find the modulus and argument of each of the cube roots of 2 2i. Illustrate these cube roots on an Argand diagram.

The points representing the cube roots are the vertices of a triangle T.

- (iii) Find the modulus and argument of each of the three complex numbers which are represented by the midpoints of the sides of T.
- The three complex numbers in part (iii) are the cube roots of *w*.
- (iv) Find w, in the form a + bi.
- 3. (i) You are given that $z = 64(\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3})$ and that z_2 is the square root of z in the third quadrant, z_3 is the cube root of z in the fourth quadrant and z_6 is the sixth root of z in the second quadrant. Show z_2 , z_3 and z_6 on an Argand diagram, and indicate the position of z.
 - (ii) Find $z_2z_3z_6$ and comment on your answer.
- 4. (i) Show from this diagram that $\arctan\left(\frac{1}{2}\right) + \arctan\left(\frac{1}{3}\right) = \frac{\pi}{4}$
 - (ii) You are given that z = 2 + i and $3\sqrt{2} + \sqrt{2}$.





- (iii) Find the exact value of $\arg z + \arg w$.
- (iv) If m is the complex number such that zw is an eighth root of m, find m.
- 5. (i) Find the six sixth roots of $64(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3})$ and show them on an Argand diagram.
 - (ii) Pick three of these roots so that they form the cube roots of a number α . What are the possible values for α ?

