Edexcel Further Mathematics Complex numbers

Section 1: de Moivre's theorem

Exercise level 2

1. (i) Write $\sqrt{3}+\mathrm{i}$ in polar form and hence find $(\sqrt{3}+\mathrm{i})^{10}$ in the form $a+\mathrm{i} b$.

You are given $z_{1}=(\sqrt{3}-4 \mathrm{i})^{5}, \quad z_{2}=(\sqrt{4}-5 \mathrm{i})^{3}, \quad z_{3}=(\sqrt{5}-3 \mathrm{i})^{4}$.
(ii) Which of z_{1}, z_{2} and z_{3} has the largest modulus?
(iii) Which of z_{1}, z_{2} and z_{3} has the largest principal argument?
2. In this question, give all answers in an exact form, with arguments in radians between $-\pi$ and π.
(i) Find the modulus and argument of 2-2i.
(ii) Hence find the modulus and argument of each of the cube roots of 2-2i.

Illustrate these cube roots on an Argand diagram.
The points representing the cube roots are the vertices of a triangle T .
(iii) Find the modulus and argument of each of the three complex numbers which are represented by the midpoints of the sides of T .
The three complex numbers in part (iii) are the cube roots of w.
(iv) Find w, in the form $a+b$ i.
3. (i) You are given that $z=64\left(\cos \frac{2 \pi}{3}+\mathrm{i} \sin \frac{2 \pi}{3}\right)$ and that z_{2} is the square root of z in the third quadrant, z_{3} is the cube root of z in the fourth quadrant and z_{6} is the sixth root of z in the second quadrant. Show z_{2}, z_{3} and z_{6} on an Argand diagram, and indicate the position of z.
(ii) Find $z_{2} z_{3} z_{6}$ and comment on your answer.
4. (i) Show from this diagram that

$$
\arctan \left(\frac{1}{2}\right)+\arctan \left(\frac{1}{3}\right)=\frac{\pi}{4}
$$

(ii) You are given that $z=2+\mathrm{i}$ and $w=\frac{3 \sqrt{2}}{2}+\frac{\sqrt{2}}{2}$ i. Show $|z|=|w|$.

(iii) Find the exact value of $\arg z+\arg w$.
(iv) If m is the complex number such that $z w$ is an eighth root of m, find m.
5. (i) Find the six sixth roots of $64\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right)$ and show them on an Argand diagram.
(ii) Pick three of these roots so that they form the cube roots of a number α. What are the possible values for α ?

