

Section 1: de Moivre's theorem

Exercise level 1

- 1. Using de Moivre's theorem, find the value of the following, giving your answers in the form a + ib.
 - (i) $(\cos 2\theta + i \sin 2\theta)^4$

(ii)
$$(1+\sqrt{3}i)^{12}$$

(iii)
$$(1-i)^6$$

(iv) $\left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right)^9$

(iv)
$$\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$$

- 2. $z_1 = \left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)^6$ $z_2 = \left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)^4$
 - (i) Which of z_1 and z_2 has the larger modulus?
 - (ii) Which of z_1 and z_2 has the larger principal argument?

3.
$$w_1 = \left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)^{-4}$$

 $w_2 = \left(\cos(-\frac{\pi}{4}) + i\sin(-\frac{\pi}{4})\right)^3$

- (i) Which of w_1 and w_2 has the larger modulus?
- (ii) Which of w_1 and w_2 has the larger principal argument?
- 4. $\cos(\Box\theta)\Box i\sin(\Box\theta)$

A plus sign + or a minus sign – is placed into each of the boxes above. How many expressions can you create in this way?

Write them all down, and express each in the form $a(\cos b\theta + i \sin b\theta)$.

What do you get if you multiply all these expressions together? What do you get if you add them all up?

- 5. If ω is a complex cube root of 1, find the value of $(1 + \omega + 2\omega^2)^9$.
- 6. Write the roots of $z^8 = 1$ in the form: (i) $r(\cos \theta + i \sin \theta)$ (ii) a + ib
- 7. If ω is a complex seventh root of unity, find the other seventh roots of unity in terms of ω .

