Edexcel Further Mathematics Complex numbers

Section 1: de Moivre's theorem

Exercise level 1

1. Using de Moivre's theorem, find the value of the following, giving your answers in the form $a+\mathrm{i} b$.
(i) $(\cos 2 \theta+\mathrm{i} \sin 2 \theta)^{4}$
(ii) $(1+\sqrt{3} i)^{12}$
(iii) $(1-i)^{6}$
(iv) $\left(\cos \frac{\pi}{3}+\mathrm{i} \sin \frac{\pi}{3}\right)^{9}$
2. $z_{1}=\left(\cos \frac{\pi}{4}+\mathrm{i} \sin \frac{\pi}{4}\right)^{6}$
$z_{2}=\left(\cos \frac{\pi}{6}+\mathrm{i} \sin \frac{\pi}{6}\right)^{4}$
(i) Which of z_{1} and z_{2} has the larger modulus?
(ii) Which of z_{1} and z_{2} has the larger principal argument?
3. $w_{1}=\left(\cos \frac{\pi}{3}+\mathrm{i} \sin \frac{\pi}{3}\right)^{-4}$
$w_{2}=\left(\cos \left(-\frac{\pi}{4}\right)+\mathrm{i} \sin \left(-\frac{\pi}{4}\right)\right)^{3}$
(i) Which of w_{1} and w_{2} has the larger modulus?
(ii) Which of w_{1} and w_{2} has the larger principal argument?
4. $\cos (\square \theta) \square \mathrm{i} \sin (\square \theta)$

A plus sign + or a minus sign - is placed into each of the boxes above.
How many expressions can you create in this way?
Write them all down, and express each in the form $a(\cos b \theta+\mathrm{i} \sin b \theta)$.
What do you get if you multiply all these expressions together?
What do you get if you add them all up?
5. If ω is a complex cube root of 1 , find the value of $\left(1+\omega+2 \omega^{2}\right)^{9}$.
6. Write the roots of $z^{8}=1$ in the form:
(i) $r(\cos \theta+\mathrm{i} \sin \theta)$
(ii) $a+\mathrm{i} b$
7. If ω is a complex seventh root of unity, find the other seventh roots of unity in terms of ω.

