Edexcel Further Mathematics Complex numbers integral

Section 1: de Moivre's theorem

Crucial points

1. Make sure you get the statement of de Moivre's theorem right

De Moivre's theorem says that $(\cos \theta+\mathrm{i} \sin \theta)^{n}=\cos n \theta+\mathrm{i} \sin n \theta$ for all integers n. It does not say, for example, that $\cos ^{n} \theta+\mathrm{i} \sin ^{n} \theta=\cos n \theta+\mathrm{i} \sin n \theta$ for all integers n. This is just one of numerous possible silly errors.
2. Remember to deal with the modulus when using de Moivre's theorem to find a power of a complex number
For example in $\left[3\left(\cos \frac{\pi}{6}+\mathrm{i} \sin \frac{\pi}{6}\right)\right]^{5}=3^{5}\left(\cos \frac{5 \pi}{6}+\mathrm{i} \sin \frac{5 \pi}{6}\right)$, a common mistake is to forget to raise 3 to the power of 5 .
3. Make sure that you don't get the modulus of an $n^{\text {th }}$ root of a complex number wrong
Remember that $\left|z^{n}\right|=|z|^{n}$, and this applies not just to integer values of n, but includes rational values of n, as when taking roots of z.
4. Make sure that you get the right number of $n^{\text {th }}$ roots of a complex number There should be exactly n of them. Remember two complex numbers which have the same moduli and arguments which differ by a multiple of 2π are actually the same number.

