Edexcel AS Mathematics Force and Newton's laws

Section 2: Applying Newton's second law

Section test

Throughout this test, take $g=9.8 \mathbf{~ m s}^{-2}$.

1. A force of 200 N acts on a car of mass 800 kg . Find the acceleration of the car.
2. A lift of mass 200 kg is moving upwards at a constant velocity of $2 \mathrm{~ms}^{-1}$. Find the tension in the rope lifting the lift.
3. Two forces act on a particle of mass 5 kg which has acceleration of $2 \mathbf{i}-3 \mathbf{j} \mathrm{~ms}^{-2}$. One of the forces is $8 \mathbf{i}+\mathbf{j}$ N. What is the other force?
4. The tension in a cable, which is lifting a load with an acceleration of $1.2 \mathrm{~ms}^{-2}$, is 11000 N. What is the mass of the load?
5. During lift-off an astronaut of mass 100 kg experiences a contact force of 8000 N from the seat. What is the acceleration of the rocket?
6. Find the force required to accelerate a car of mass 800 kg at $2 \mathrm{~ms}^{-2}$ against a resistance of 1000 N .
7. A force of $6 \mathbf{i}+\mathbf{j} \mathrm{N}$ acts on a particle of mass 2 kg . The initial velocity of the particle is $2 \mathbf{i}-5 \mathbf{j} \mathrm{~ms}^{-1}$. What is its velocity after 4 seconds?
8. A lorry weighing 3 tonnes is travelling at $10 \mathrm{~ms}^{-1}$. Find the force needed to stop it in 10 seconds.
9. A lorry weighing 3 tonnes is travelling at $10 \mathrm{~ms}^{-1}$. Find the force needed to stop it in 10 m .
10. A miners' cage of mass 420 kg contains 3 miners of total mass 280 kg . The cage is lowered from rest by a cable. For the first 10 seconds the cage accelerates uniformly and descends a distance of 75 m . What is the force in the cable during the first 10 seconds?

Edexcel AS Maths Force \& Newton's laws 2 section test solns
 Solutions to section test

1. $F=m a$
$200=800 a$
$a=0.25$
The acceleration of the car is $0.25 \mathrm{~ms}^{-2}$.
2.

Since the lift is moving at constant velocity, the acceleration is 0 .
$T-2009=0$
$T=200 \times 9.8=1960$
The tension in the rope is 1960 N .
3. $\underset{\sim}{F}+8 \underset{\sim}{i}+\underset{\sim}{j}=5(2 \underset{\sim}{i}-3 \underset{\sim}{j})$
$\underset{\sim}{F}+8 \underset{\sim}{i}+\underset{\sim}{j}=10 \underset{\sim}{i}-15 \underset{\sim}{j}$
$\underset{\sim}{F}=2 \underset{\sim}{i}-16 \underset{\sim}{j}$
4.

Edexcel AS Maths Force \& Newton's laws 2 section test solns

5.

$$
\begin{aligned}
& F=m a \\
& 8000-100 \mathrm{~g}=100 a \\
& 8000-980=100 a \\
& 7020=100 a \\
& a=70.2
\end{aligned}
$$

Acceleration is $70.2 \mathrm{~ms}^{-2}$.
6.

Horizontally:

$$
\begin{aligned}
& F=m a \\
& x-1000=800 \times 2 \\
& x=2600
\end{aligned}
$$

The force required is 2600 N .
7. $\underset{\sim}{F}=m a$
$6 \underset{\sim}{i}+\underset{\sim}{j}=2 \underset{\sim}{a}$
$\underset{\sim}{a}=3 \underset{\sim}{i}+\frac{1}{2} \underset{\sim}{j}$
$\underset{\sim}{v}=\underset{\sim}{u}+\underset{\sim}{a} t$
$=2 \underset{\sim}{i}-5 \underset{\sim}{j}+4\left(3 \underset{\sim}{i}+\frac{1}{2} \underset{\sim}{j}\right)$
$=14 i-3 j$

Edexcel AS Maths Force \& Newton's laws 2 section test solns

8. $u=10$
$v=0$
$v=u+a t$
$0=10+10 a$
$t=10$
$a=-1$
$a=$?
$F=m a$
$=3000 \times-1$
$=-3000$
The force needed to stop the lorry is 3000 N .
9. $u=10$
$v^{2}=u^{2}+2 a s$
$v=0$
$0=10^{2}+2 \times 10 a$
$s=10$
$-20 a=100$
$a=$?
$a=-5$
$F=m a$
$=3000 \times-5$
$=-15000$
The force needed to stop the lorry is 15000 N .
10. $u=0$

$$
\begin{aligned}
& s=u t+\frac{1}{2} a t^{2} \\
& 75=0 \times 10+\frac{1}{2} a \times 10^{2} \\
& 75=50 a \\
& a=1.5
\end{aligned}
$$

$t=10$
$s=75$
$a=$?

Total mass $=700 \mathrm{~kg}$
$F=m a$
$7009-T=700 \times 1.5$
$T=700 \times 9.8-700 \times 1.5$
$T=5810$

The acceleration is negative as it is slowing down. The force is negative as it is against the direction of motion.

