Section 1: Displacement and distance

Section test

1. The displacement from O of a particle moving along a straight line is given by

$$
x=t^{2}-4 t
$$

where x is measured in metres.
(i) The displacement of the particle from O is zero at
(a) $t=4$
(b) $t=0$
(c) $t=0$ and $t=4$
(d) $t=2$
(ii) What is the displacement of the particle after 2 seconds?
(iii) Find the distance the particle has travelled after 4 seconds.
(iv) Find the distance the particle has travelled after 6 seconds.
2. The diagram below represents a two-stage journey of a particle moving in a straight line.

(i) Find the distance travelled by the particle in the 7 seconds.
(ii) What is the velocity of the particle on the first part of the journey?
(iii) What is the average velocity of the particle?

MEI AS Maths Kinematics 1 Section test solutions

3. The graph below shows the displacement of a particle at time t.

(i) What is the initial velocity of the particle?
(ii) What is the average velocity of the particle for the whole journey?
(iii) What is the average speed of the particle for the whole journey?

MEI AS Maths Kinematics 1 Section test solutions

Solutions to section test

1. (i) When the displacement from 0 is zero, $t^{2}-4 t=0$

$$
\begin{aligned}
& t(t-4)=0 \\
& t=0 \text { or } t=4
\end{aligned}
$$

(ii) After 2 secouds, $x=2^{2}-4 \times 2=4-8=-4$ so the displacement after 2 seconds is -4 metres.
((iii)

The sketch shows that the particle moves to a maximum displacement of -4 m , and then returns to 0 .
so the total distance travelled is 8 m .
(iv) Between $t=0$ and $t=4$ the particle has travelled 8 m (see above).

After 6 seconds, $x=6^{2}-4 \times 6=36-24=12$, so displacement is 12 m . Therefore between $t=4$ and $t=6$ the particle travels a further 12 m . So the total distance travelled after 8 seconds is $8+12=20 \mathrm{~m}$.
2. (i) The particle travels 6 m in the negative direction, then reverses direction. After 7 seconds its position is 6 m in the positive direction. it therefore travels $6+6+6=18 \mathrm{~m}$.
(ii) Displacement in first part of the journey $=-6 \mathrm{~m}$

Time taken for first part of the journey $=3$ seconds
velocity $=\frac{\text { displacement }}{\text { time }}=\frac{-6}{3}=-2 \mathrm{~ms}^{-1}$.
(iii) Total displacement $=6 \mathrm{~m}$

Time taken for complete journey $=7$ seconds
Average velocity $=\frac{\text { total displacement }}{\text { time }}=\frac{6}{7} \mathrm{~ms}^{-1}$.
3. (i) The initial velocity is the gradient of the first part of the graph. lnitial velocíty $=\frac{10}{4}=2.5 \mathrm{~ms}^{-1}$.
(ii) Total displacement $=6 \mathrm{~m}$

MEI AS Maths Kinematics 1 Section test solutions

Time of whole journey $=8$ seconds
Average velocity $=\frac{6}{8}=0.75 \mathrm{~ms}^{-1}$.
(iii) Total distance travelled $=10+4=14$

Time of whole journey $=8$ seconds
Average speed $=\frac{14}{8}=1.75 \mathrm{~ms}^{-1}$.

