Edexcel AS Mathematics Variable acceleration

Section 1: Using calculus

Section test

1. The displacement $s \mathrm{~m}$ of a particle after t seconds is given by $s=t^{3}-3 t^{2}+6$. Find the velocity after 5 seconds.
2. The displacement $s \mathrm{~m}$ of a particle after t seconds is given by $s=t^{4}-4 t$. At what time is the particle is stationary?
3. The displacement $s \mathrm{~m}$ of a particle after t seconds is given by $s=3 t^{3}-5 t^{2}+7$. Find the acceleration of the particle after 1 second.
4. The velocity $v \mathrm{~ms}^{-1}$ of a particle after t seconds is given by $v=(3 t-2)(t-4)$. Find the acceleration when $t=3$.
5. The acceleration $a \mathrm{~ms}^{-2}$ after t seconds of a particle, initially at rest, is given by $a=t^{3}-2 t$. What is its velocity after 2 seconds?
6. The velocity $v \mathrm{~ms}^{-1}$ of a particle is given by $v=t-3 t^{2}$. The initial displacement of the particle from the origin is 3 m . Find its displacement from the origin after 5 seconds.
7. The acceleration $a \mathrm{~ms}^{-2}$ of a particle after t seconds is given by $a=t$. The particle is initially at the origin at rest. After how long is its displacement 4.5 m ?
8. The velocity $v \mathrm{~ms}^{-1}$ of a particle after t seconds is given by $v=2 t-t^{3}$. The particle starts from rest. What is its maximum displacement?
9. The acceleration $a \mathrm{~ms}^{-2}$ of a particle after t seconds is given by $a=4 t^{3}-8$. If it starts from rest, after how long is it next stationary?
10. During braking the speed of a car is modelled by $v=75-3 t^{2}$ until it stops moving. From when braking begins, what is the distance that the car travels before it stops?

Edexcel AS Maths Variable accleration 1 section test solutions

Solutions to section test

1. $s=t^{3}-3 t^{2}+6$
$v=\frac{d s}{d t}=3 t^{2}-6 t$
Whent $=5, v=3 \times(5)^{2}-6 \times 5=45$
The velocity after 5 seconds is $45 \mathrm{~ms}^{-1}$.
2. $s=t^{4}-4 t$
$v=\frac{d s}{d t}=4 t^{3}-4$
When $v=0,4 t^{3}-4=0$

$$
\begin{aligned}
& t^{3}=1 \\
& t=1
\end{aligned}
$$

The particle is stationary after 1 second.
3. $s=3 t^{3}-5 t^{2}+7$
$v=\frac{d s}{d t}=9 t^{2}-10 t$
$a=\frac{d v}{d t}=18 t-10$
When $t=1, a=18 \times 1-10=8$
The acceleration after 1 second is $8 \mathrm{~ms}^{-2}$.
4. $v=(3 t-2)(t-4)$

$$
=3 t^{2}-14 t+8
$$

$a=\frac{d v}{d t}=6 t-14$
Whent $=3, a=6 \times 3-14=4$
The acceleration when $t=3$ is $4 \mathrm{~ms}^{-2}$.
5. $a=t^{3}-2 t$
$v=\int a d t=\frac{1}{4} t^{4}-t^{2}+c$
When $t=0, v=0 \Rightarrow c=0$
$v=\frac{1}{4} t^{4}-t^{2}$
When $t=2, v=\frac{1}{4} \times 2^{4}-2^{2}=0$
After 2 seconds the velocity is $0 \mathrm{~ms}^{-1}$.

Edexcel AS Maths Variable accleration 1 section test solutions

6. $v=t-3 t^{2}$
$s=\int v d t=\frac{1}{2} t^{2}-t^{3}+c$
Whent $=0, s=3 \Rightarrow c=3$
$s=\frac{1}{2} t^{2}-t^{3}+3$
Whent $=5, s=\frac{1}{2} \times 5^{2}-5^{3}+3=-109.5$
its displacement from the origin after 5 seconds is -109.5 m .
7. $a=t$
$v=\int a d t=\frac{1}{2} t^{2}+c$
When $t=0, v=0 \Rightarrow c=0$
$v=\frac{1}{2} t^{2}$
$s=\int v d t=\frac{1}{6} t^{3}+k$
When $t=0, s=0 \Rightarrow k=0$
$s=\frac{1}{6} t^{3}$
When $s=4.5,4.5=\frac{1}{6} t^{3}$

$$
\begin{aligned}
& 27=t^{3} \\
& t=3
\end{aligned}
$$

its displacement is 4.5 m after 3 seconds.
8. $v=2 t-t^{3}$

The maximum displacement occurs when $v=0: t\left(2-t^{2}\right)=0$
$t=0$ or $t=\sqrt{2}$
$s=\int v d t=t^{2}-\frac{1}{4} t^{4}+c$
When $t=0, s=0 \Rightarrow c=0$
$s=t^{2}-\frac{1}{4} t^{4}$
When $t=\sqrt{2}, s=2-\frac{1}{4} \times 2^{2}=1$
The maximum displacement is 1 m .
9. $a=4 t^{3}-8$
$v=\int a d t=t^{4}-8 t+c$
When $t=0, v=0 \Rightarrow c=0$
$v=t^{4}-8 t$
When it is stationary, $t^{4}-8 t=0$

$$
\begin{aligned}
& t\left(t^{3}-8\right) \\
& t=0 \text { or } t=2
\end{aligned}
$$

It is next stationary after 2 seconds.

Edexcel AS Maths Variable accleration 1 section test solutions

10. $v=75-3 t^{2}$

When the car stops, $75-3 t^{2}=0$

$$
\begin{aligned}
& \qquad \begin{array}{l}
t^{2}=25 \\
t=5 \\
s=\int v d t=75 t-t^{3}+c
\end{array} \\
& \text { When } t=0, s=0 \Rightarrow 0=0 \\
& s=75 t-t^{3} \\
& \text { When } t=5, s=75 \times 5-5^{3}=250 \\
& \text { it travels } 250 \mathrm{~m} \text { before stopping. }
\end{aligned}
$$

