

Section 1: Using calculus

Section test

- 1. The displacement s m of a particle after t seconds is given by $s = t^3 3t^2 + 6$. Find the velocity after 5 seconds.
- 2. The displacement s m of a particle after t seconds is given by $s = t^4 4t$. At what time is the particle is stationary?
- 3. The displacement s m of a particle after t seconds is given by $s = 3t^3 5t^2 + 7$. Find the acceleration of the particle after 1 second.
- 4. The velocity $v \text{ ms}^{-1}$ of a particle after t seconds is given by v = (3t-2)(t-4). Find the acceleration when t = 3.
- 5. The acceleration $a \text{ ms}^{-2}$ after *t* seconds of a particle, initially at rest, is given by $a = t^3 2t$. What is its velocity after 2 seconds?
- 6. The velocity $v \text{ ms}^{-1}$ of a particle is given by $v = t 3t^2$. The initial displacement of the particle from the origin is 3 m. Find its displacement from the origin after 5 seconds.
- 7. The acceleration $a \text{ ms}^{-2}$ of a particle after *t* seconds is given by a = t. The particle is initially at the origin at rest. After how long is its displacement 4.5 m?
- 8. The velocity $v \text{ ms}^{-1}$ of a particle after *t* seconds is given by $v = 2t t^3$. The particle starts from rest. What is its maximum displacement?
- 9. The acceleration $a \text{ ms}^{-2}$ of a particle after *t* seconds is given by $a = 4t^3 8$. If it starts from rest, after how long is it next stationary?
- 10. During braking the speed of a car is modelled by $v = 75 3t^2$ until it stops moving. From when braking begins, what is the distance that the car travels before it stops?

Edexcel AS Maths Variable accleration 1 section test solutions

Solutions to section test

1. $s = t^3 - 3t^2 + 6$

$$v = \frac{ds}{dt} = 3t^2 - 6t$$

When t = 5, $v = 3 \times (5)^2 - 6 \times 5 = 45$ The velocity after 5 seconds is 45 ms⁻¹.

2.
$$s = t^{4} - 4t$$

$$v = \frac{ds}{dt} = 4t^{3} - 4$$
When $v = 0$, $4t^{3} - 4 = 0$

$$t^{3} = 1$$

$$t = 1$$

The particle is stationary after 1 second.

3.
$$s = 3t^{3} - 5t^{2} + 7$$

$$v = \frac{ds}{dt} = 9t^{2} - 10t$$

$$a = \frac{dv}{dt} = 18t - 10$$
When t = 1, a = 18 × 1 - 10 = 8
The acceleration after 1 second is 8 ms⁻².

4.
$$v = (3t - 2)(t - 4)$$

 $= 3t^{2} - 14t + 8$
 $a = \frac{dv}{dt} = 6t - 14$
When $t = 3$, $a = 6 \times 3 - 14 = 4$
The acceleration when $t = 3$ is 4 ms⁻².

5.
$$a = t^3 - 2t$$

 $v = \int a dt = \frac{1}{4}t^4 - t^2 + c$
When $t = 0, v = 0 \Rightarrow c = 0$
 $v = \frac{1}{4}t^4 - t^2$
When $t = 2, v = \frac{1}{4} \times 2^4 - 2^2 = 0$
After 2 seconds the velocity is 0 ms⁻¹.

Edexcel AS Maths Variable accleration 1 section test solutions

- 6. $v = t 3t^2$ $s = \int v dt = \frac{1}{2}t^2 - t^3 + c$ When t = 0, $s = 3 \Rightarrow c = 3$ $s = \frac{1}{2}t^2 - t^3 + 3$ When t = 5, $s = \frac{1}{2} \times 5^2 - 5^3 + 3 = -109.5$ Its displacement from the origin after 5 seconds is -109.5 m.
- 7. a=t

 $v = \int a \, dt = \frac{1}{2}t^2 + c$ When $t = 0, v = 0 \Rightarrow c = 0$ $v = \frac{1}{2}t^2$ $s = \int v \, dt = \frac{1}{6}t^3 + k$ When $t = 0, s = 0 \Rightarrow k = 0$ $s = \frac{1}{6}t^3$ When $s = 4.5, 4.5 = \frac{1}{6}t^3$ $27 = t^3$ t = 3Its displacement is 4.5 m after 3 seconds.

8. $v = 2t - t^3$ The maximum displacement occurs when v = 0: $t(2-t^2) = 0$

t=0 or $t=\sqrt{2}$

 $s = \int v dt = t^{2} - \frac{1}{4}t^{4} + c$ when t = 0, $s = 0 \Rightarrow c = 0$ $s = t^{2} - \frac{1}{4}t^{4}$ when $t = \sqrt{2}$, $s = 2 - \frac{1}{4} \times 2^{2} = 1$ The maximum displacement is 1 m.

9. $a = 4t^3 - 8$ $v = \int a dt = t^4 - 8t + c$ When $t = 0, v = 0 \Rightarrow c = 0$ $v = t^4 - 8t$ When it is stationary, $t^4 - 8t = 0$ $t(t^3 - 8)$ t = 0 or t = 2It is next stationary after 2 seconds.

Edexcel AS Maths Variable accleration 1 section test solutions

10. $v = 75 - 3t^2$ When the car stops, $75 - 3t^2 = 0$ $t^2 = 25$ t = 5 $s = \int v dt = 75t - t^3 + c$ When t = 0, $s = 0 \Rightarrow c = 0$ $s = 75t - t^3$ When t = 5, $s = 75 \times 5 - 5^3 = 250$ It travels 250 m before stopping.