Edexcel AS Maths Statistical hypothesis testing
 \int integral

Section 2: More about hypothesis tests

Section test

1. I suspect that a particular coin I have is biased towards heads. In order to investigate this, I toss it 15 times. If X is the number of heads in the 15 tosses, what is the critical region for the hypothesis test conducted at the 5\% significance level?
(a) $X \leq 12$
(b) $X \geq 12$
(c) $X \leq 11$
(d) $X \geq 11$
2. I suspect that a particular coin I have is biased. In order to investigate this, I toss it 15 times. If X is the number of heads in the 15 tosses, what is the critical region for the hypothesis test conducted at the 5% significance level?
(a) $X \leq 3$
(b) $X \leq 3$ or $X \geq 12$
(c) $X \geq 12$
(d) $3<X<12$
3. A pharmaceutical company claims that its new vaccine is 90% effective. To find out if this claim is too high, a hypothesis test is conducted at the 1% significance level with a sample of 14 patients. Using X to denote the number of patients for whom the vaccine is effective, what is the critical value of X ?
4. It is claimed that a coin is fair. In order to test this claim it is tossed 18 times. If X is the number of heads in the 18 tosses, what is the acceptance region for the hypothesis test conducted at the 10% significance level?
5. I suspect that my opponent in a card game may be cheating. To test this, I decided to record the suit of the first card dealt after my opponent had shuffled the pack of cards, and to carry out a hypothesis test to see if the probability that a club was dealt first is different from 0.25 . I found that on only one of 20 occasions was the first card dealt a club. At which of the significance levels: $10 \%, 5 \%, 2 \frac{1}{2} \%$ and 1%, can I claim that my opponent was cheating?
6. It is claimed that 10% of men can distinguish between butter and margarine, but some people feel that this percentage is too low. Let X be the number of men who can distinguish between butter and margarine. Working at the 5% significance level with a sample of size 12, what is the critical region?

Edexcel AS Maths Hyp testing 2 section test solutions

7. A seed manufacturer claims that in a particular variety that he sells there will be one white flower for every three pink flowers. You decide to carry out a hypothesis test to see if this claim is correct, by buying a packet and planting the contents.

If p is the probability of a white flower, what is the null hypothesis, H_{0}, which you would use in a hypothesis test?

If p is the probability of a white flower, what is the alternative hypothesis, H_{1}, which you would use in a hypothesis test?

From the packet you bought, you get 10 white and 10 pink flowers.
Which of the statements below are correct?
(i) At the 5% significance level, H_{0} is rejected.
(ii) At the 2.5% significance level, H_{0} is rejected.

What is the critical region for this hypothesis test, conducted at the 10% significance level?

Edexcel AS Maths Hyp testing 2 section test solutions

Solutions to section test

1. Let p be the probability of getting a head.
$H_{o}: p=0.5$
$H_{1}: p>0.5$
χ is the number of heads in the 15 tosses.
Need the lowest value of r for which $P(x \geq r)<0.05$

$$
\begin{aligned}
& \Rightarrow 1-P(x \leq r-1)<0.05 \\
& \Rightarrow P(x \leq r-1)>0.95
\end{aligned}
$$

For $B(15,0.5), \quad P(x \leq 10)=0.9408$

$$
P(x \leq 11)=0.9824
$$

Lowest value of $r-1$ is 11, so lowest value of ris 12.
The critical region is $x \geq 12$.
2. Let p be the probability of getting a head.
$H_{0}: p=0.5$
$H_{1}: p \neq 0.5$
x is the number of heads in the 15 tosses.
since this is a two-tailed test, the critical region has two parts.
For the lower tail, need the highest value of r for which $P(x \leq r)<0.025$
For $B(15,0.5), \quad P(x \leq 3)=0.0176$

$$
P(x \leq 4)=0.0592
$$

Highest value of lis 3 .
For the upper tail, need the lowest value of r for which $P(x \geq r)<0.025$

$$
\begin{aligned}
& \Rightarrow 1-P(x \leq r-1)<0.025 \\
& \Rightarrow P(x \leq r-1)>0.975
\end{aligned}
$$

For $B(15,0.5), \quad P(x \leq 10)=0.9408$

$$
P(x \leq 11)=0.9824
$$

Lowest value of $r-1$ is 11, so lowest value of lis 12 .

The critical region is $x \leq 3$ or $x \geq 12$.
3. Let p be the probability that the vaccine is effective.
$H_{0}: p=0.9$
$H_{1}: p<0.9$
χ is the number of patients for whom the vaccine is effective.
Need the highest value of r for which $P(x \leq r)<0.01$
For $B(14,0.9), \quad P(x \leq 9)=0.092$

$$
P(x \leq 10)=0.0441
$$

4. Highest value of ris 9 .

The critical value is 9 .

Edexcel AS Maths Hyp testing 2 section test solutions

Let p be the probability of getting a head.

$$
\begin{aligned}
& H_{0}: p=0.5 \\
& H_{1}: p \neq 0.5
\end{aligned}
$$

x is the number of heads in the 18 tosses.
since this is a two-tailed test, the critical region has two parts.
For the lower tail, need the highest value of r for which $P(x \leq r)<0.05$
For $B(18,0.5), \quad P(x \leq 5)=0.0481$

$$
P(x \leq 6)=0.1189
$$

Highest value of ris 5 .
For the upper tail, need the lowest value of r for which $P(x \geq r)<0.05$

$$
\begin{aligned}
& \Rightarrow 1-P(x \leq r-1)<0.05 \\
& \Rightarrow P(x \leq r-1)>0.95
\end{aligned}
$$

For $B(18,0.5), \quad P(x \leq 11)=0.8811$
$P(x \leq 12)=0.9519$
Lowest value of $r-1$ is 12, so lowest value of ris 13.

The acceptance region is $6 \leq x \leq 12$.
5. Let p be the probability of dealing a club
$H_{0}: p=0.25$
$H_{1}: p \neq 0.25$
x is the number of clubs in the 20 occasions.
For $B(20,0.25), P(x \leq 1)=0.0243$
At 10% significance level, reject H_{o} since $P(x \leq 1)<0.05$
At 5% significance level, reject H_{0} since $P(x \leq 1)<0.025$
At $2 \frac{1}{2} \%$ significance level, accept Ho since $P(x \leq 1)>0.0125$
At 1\% significance level, accept H_{0} since $P(x \leq 1)>0.001$

So Ho is rejected (i.e. there is evidence to suggest that opponent is cheating) at 5% and 10% levels only.
6. χ is the number of men who can distinguish between butter and margarine.
$\chi \sim B(12, p)$, where p is the probability that a man can distinguish between butter and margarine.
$H_{0}: p=0.1$
$H_{1}: p>0.1$

Need the lowest value of r for which $P(x \geq r)<0.05$

$$
\begin{aligned}
& \Rightarrow 1-P(x \leq r-1)<0.05 \\
& \Rightarrow P(x \leq r-1)>0.95
\end{aligned}
$$

Edexcel AS Maths Hyp testing 2 section test solutions

For $B(12,0.1), \quad P(x \leq 2)=0.8891$

$$
P(x \leq 3)=0.9744
$$

Lowest value of $r-1$ is 3 , so lowest value of r is 4.
The critical region is $x \geq 4$.
7. The null hypothesis is always of the form " $p=\ldots$ "
$H_{o}: p=\frac{1}{4}$

There is no indication of suspicion that the proportion differs in a particular direction, so this is a two-tailed test.
$H_{1}: p \neq \frac{1}{4}$
$x=10$ is in the upper tail.
$P(x \geq 10)=1-P(x \leq 9)=1-0.9861=0.0139$

This is a two-tailed test, so at the 5% significance level compare this probability with 2.5%.
$P(x \geq 10)<0.025$, so reject H.
At the 2.5% significance level compare this probability with 1.25\%.
$P(x \geq 10)>0.0125$, so accept H.

Since this is a two-tailed test, the critical region has two parts.
For the lower tail, need the highest value of r for which $P(x \leq r)<0.05$
For $B(20,0.25), \quad P(x \leq 1)=0.0243$

$$
P(x \leq 2)=0.0913
$$

Highest value of ris 1.
For the upper tail, need the lowest value of r for which $P(x \geq r)<0.05$

$$
\begin{aligned}
& \Rightarrow 1-P(x \leq r-1)<0.05 \\
& \Rightarrow P(x \leq r-1)>0.95
\end{aligned}
$$

For $B(20,0.25), \quad P(x \leq 7)=0.8982$

$$
P(x \leq 8)=0.9591
$$

Lowest value of $r-1$ is 8 , so lowest value of ris 9 .
The critical region is $x \leq 1$ or $x \geq 9$

