

Section 1: Using the normal distribution

Section test

1. A spelling test administered to a large number of 10-year-old children has a mean score of 14.3 (out of 20). A researcher is investigating whether a new approach to teaching spelling has any effect on the results of the test. She carries out a hypothesis test. The hypotheses she should use (where μ is the population mean score) are

(a) H ₀ : $\mu = 14.3$	H ₁ : $\mu > 14.3$	(b) $H_0: \mu = 14.3$	H ₁ : $\mu \neq 14.3$
(c) H ₀ : $\mu = 14.3$	H ₁ : $\mu < 14.3$	(d) H ₀ : $\mu > 14.3$	H ₁ : $\mu < 14.3$

2. A random sample of size 16 is taken from a Normal distribution with known standard deviation 7.8.

A hypothesis test is carried out at the 5% level. The hypotheses are as follows:

> $H_0: \mu = 120$ $H_1: \mu > 120$

where μ is the true population mean. The sample mean is 123.5. What is the *p*-value and what is the conclusion?

3. A random sample of size 12 is taken from a Normal distribution with known standard deviation 4.4.

A hypothesis test is carried out at the 2% level. The hypotheses are as follows:

 $H_0: \mu = 51$ $H_1: \mu \neq 51$ where μ is the true population mean. The sample mean is 48.2. What is the critical region and what is the conclusion?

4. A random sample of size 50 is taken from a Normal distribution with known standard deviation 25.8.

A hypothesis test is carried out at the 3% level. The hypotheses are as follows:

```
H_0: \mu = 800
H_1: \mu < 800
```

where μ is the true population mean. The sample mean is 793.5. What is the *p*-value and what is the conclusion?

5. An intelligence test was designed to have a mean score of 100 and standard deviation of 15. A researcher put forward a theory that people are becoming more intelligent (as measured by this particular test). A random sample of 120 people were selected and given the test. The following is a summary of the results:

$$n = 120$$
 $\sum_{i=1}^{n} X_i = 12420$

Edexcel A level Hypothesis testing 1 section test solns

Assume that the test scores are Normally distributed and that the population standard deviation is 15. A hypothesis test is carried out at the 5% level. Find the sample mean. What is the critical region? What is the conclusion of the test?

Edexcel A level Hypothesis testing 1 section test solns

Solutions to section test

- 1) The null hypothesis is that the mean score stays the same, i.e. H₀: $\mu = 14.3$ The researcher is looking for a change in either direction, so the alternative hypothesis is given by H₁: $\mu \neq 14.3$.
- 2) $H_0: \mu = 120$

 $H_1: \mu > 120$

where μ is the true population mean.

$$\bar{X} \sim N\left(120, \frac{\overline{7.8}}{\sqrt{16}}\right)$$

 $P(\bar{X} > 123.5) = 0.036$ 0.036 < 0.05, so reject Ho.

3) Ho: $\mu = 51$

H₁ : $\mu \neq 51$ where μ is the true population mean.

$$\bar{X} \sim N\left(51, \frac{4.4}{\sqrt{12}}\right)$$

Using a calculator, the inverse normal of 0.01 is 48.05 The critical region is \overline{X} < 48.05 48.2 is not in the critical region, so accept H₀.

4) $H_0: \mu = 800$

H₁ : μ < 800 where μ is the true population mean.

$$\bar{X} \sim N\left(800, \frac{25.8}{\sqrt{50}}\right)$$

P($\bar{X} < 793.5$) = 0.037
0.037 > 0.03, so accept H₀.

5) $H_0: \mu = 100$

 $H_1: \mu > 100$

where μ is the true population mean test score.

$$\bar{X} = \frac{12420}{120} = 103.5$$
$$\bar{X} \sim N\left(100, \frac{17.2^2}{120}\right)$$

From calculator inverse normal of 0.95 is 102.6 Critical region is $\overline{X} > 102.6$

Edexcel A level Hypothesis testing 1 section test solns

Sínce 103.5 is in the critical region, reject Ho. The evidence suggests that people are scoring more highly on this particular test.