Edexcel AS Mathematics Probability

Section 2: Probability distributions

Notes and Examples

These notes contain subsections on:

- Definitions and notation
- Probability distributions
- Probability distributions defined algebraically
- The discrete uniform distribution

Definitions and notation

If a variable has an associated probability, (for example, the outcome when throwing a die), then the variable is referred to as a random variable.

A discrete random variable is a variable for which a list of possible numerical values can be made. A discrete random variable is usually denoted by an upper case letter, such as X, Y, or Z etc. You may think of this as the name of the variable. The particular values the variable takes are denoted by lower case letters, such as x, y, z or x_{1}, x_{2}, x_{3} etc.

So for example $\mathrm{P}\left(X=x_{1}\right)=\frac{1}{3}$ should be read as: "The probability that the random variable X takes the value x_{1} is $\frac{1}{3}$ ".

Probability distributions

If the discrete random variable X can take the possible values $x_{1}, x_{2} \ldots \ldots x_{n}$. with probabilities $p_{1}, p_{2}, \ldots \ldots p_{n}$ respectively then $p_{1}+\mathrm{p}_{2}+\ldots \ldots+p_{n}=1$. This is called a probability distribution.

It is useful to tabulate the possible outcomes and associated probabilities. The example below is a trivial one which serves to illustrate the correct notation.

Example 1

A fair die is thrown. The number shown on the die is the random variable X.
Tabulate the possible outcomes.

Solution

X takes the six possible outcomes $1,2,3,4,5,6$ which each have probability $\frac{1}{6}$.

r	1	2	3	4	5	6
$\mathrm{P}(X=r)$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

Edexcel AS Maths Probability 2 Notes and Examples

A probability distribution can be illustrated using a vertical line chart.

Example 2

Y takes the possible outcomes $0,1,2,3$ with probabilities $\frac{1}{12}, \frac{1}{3}, \frac{1}{6}, \frac{5}{12}$ respectively. Draw a diagram to illustrate the probability distribution of Y.

Solution

Sometimes some work is needed to find the values of the probabilities.

Example 3

Two unbiased spinners, one numbered 1, 3, 5, 7 and the other numbered $1,2,3$ are spun. The random variable X is the sum of the two results.
Find the probability distribution for X.

Solution

Listing all the possible outcomes is best done in a table.

	$1^{\text {st }}$ spinner				
$2^{\text {nd }}$ spinner		1	3	5	7
	1	2	4	6	8
	2	3	5	7	9
	3	4	6	8	10

The probability distribution for X can now be tabulated.

Edexcel AS Maths Probability 2 Notes and Examples

In the next example you need to use a tree diagram.

Example 4

A bag contains 4 blue discs and 3 green discs. Two discs are removed without replacement. The random variable X is the number of blue discs removed.
Find the probability distribution of X.

Solution

When $X=0$, both discs are green, so $\mathrm{P}(X=0)=\frac{1}{7}$.
When $X=1$, one of the discs is blue, so $\mathrm{P}(X=1)=\frac{2}{7}+\frac{2}{7}=\frac{4}{7}$.
When $X=2$, both discs are blue, so $\mathrm{P}(X=2)=\frac{2}{7}$.

x	0	1	2
$\mathrm{P}(X=x)$	$\frac{1}{7}$	$\frac{4}{7}$	$\frac{2}{7}$

Probability distributions defined algebraically

It is often convenient to define the probability distribution by writing it as an algebraic function.

Example 5

The probability distribution of a random variable X is given by:

$$
\mathrm{P}(X=r)=\frac{r}{15} \text { for } r=1,3,4,7
$$

Tabulate the possible outcomes.

Edexcel AS Maths Probability 2 Notes and Examples

Solution

Sometimes the probability distribution will be defined in terms of a constant.

Example 6

The probability distribution of a random variable Y is given by:

$$
\mathrm{P}(Y=y)=c y \text { for } y=1,2,3,4
$$

Find the value of c and tabulate the probability distribution.

Solution

$$
\begin{array}{ll}
y=1 & \mathrm{P}(Y=1)=c \times 1=c \\
y=2 & \mathrm{P}(Y=2)=c \times 2=2 c \text { etc }
\end{array}
$$

y	1	2	3	4
$\mathrm{P}(Y=y)$	c	$2 c$	$3 c$	$4 c$

Since the probabilities must add up to 1 :

$$
\begin{aligned}
c+2 c+3 c+4 c & =1 \\
10 c & =1 \\
c & =\frac{1}{10}
\end{aligned}
$$

y	1	2	3	4
$\mathrm{P}(Y=y)$	$\frac{1}{10}$	$\frac{2}{10}$	$\frac{3}{10}$	$\frac{4}{10}$

The discrete uniform distribution

A special probability distribution is the discrete uniform distribution, in which there are a number of equally likely outcomes. You have of course worked with this distribution many times, when dealing with dice throws, random numbers and so on!

Example 1 in these notes shows a discrete uniform distribution.

