

Section 2: Probability distributions

Notes and Examples

These notes contain subsections on:

- Definitions and notation
- Probability distributions
- Probability distributions defined algebraically
- The discrete uniform distribution

Definitions and notation

If a variable has an associated probability, (for example, the outcome when throwing a die), then the variable is referred to as a **random variable**.

A **discrete random variable** is a variable for which a list of possible numerical values can be made. A discrete random variable is usually denoted by an upper case letter, such as X, Y, or Z etc. You may think of this as the name of the variable. The particular values the variable takes are denoted by lower case letters, such as x, y, z or x_1 , x_2 , x_3 etc.

So for example $P(X = x_1) = \frac{1}{3}$ should be read as: "The probability that the random variable *X* takes the value x_1 is $\frac{1}{3}$ ".

Probability distributions

If the discrete random variable *X* can take the possible values x_1, x_2, \ldots, x_n . with probabilities p_1, p_2, \ldots, p_n respectively then $p_1 + p_2 + \ldots + p_n = 1$. This is called a **probability distribution**.

It is useful to tabulate the possible outcomes and associated probabilities. The example below is a trivial one which serves to illustrate the correct notation.

Example 1

A fair die is thrown. The number shown on the die is the random variable *X*. Tabulate the possible outcomes.

Solution

X takes the six possible outcomes 1, 2, 3, 4, 5, 6 which each have probability $\frac{1}{6}$.

r	1	2	3	4	5	6
$\mathbf{P}(X=r)$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

Edexcel AS Maths Probability 2 Notes and Examples

A probability distribution can be illustrated using a vertical line chart.

Example 2

Y takes the possible outcomes 0, 1, 2, 3 with probabilities $\frac{1}{12}$, $\frac{1}{3}$, $\frac{1}{6}$, $\frac{5}{12}$ respectively. Draw a diagram to illustrate the probability distribution of *Y*.

Solution

Sometimes some work is needed to find the values of the probabilities.

Example 3

Two unbiased spinners, one numbered 1, 3, 5, 7 and the other numbered 1, 2, 3 are spun. The random variable X is the sum of the two results. Find the probability distribution for X.

Solution

Listing all the possible outcomes is best done in a table.

	1 st spinner					
2 nd spinner		1	3	5	7	
	1	2	4	6	8	
	2	3	5	7	9	
	3	4	6	8	10	

The probability distribution for *X* can now be tabulated.

x	2	3	4	5	6	7	8	9	10	\sim
P(X = x)	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{2}{12}$	$\frac{1}{12}$	$\frac{2}{12}$	$\frac{1}{12}$	$\frac{2}{12}$	$\frac{1}{12}$	$\frac{1}{12}$	

Check that the probabilities add up to 1

Edexcel AS Maths Probability 2 Notes and Examples

In the next example you need to use a tree diagram.

Example 4

A bag contains 4 blue discs and 3 green discs. Two discs are removed without replacement. The random variable X is the number of blue discs removed. Find the probability distribution of X.

Solution

When X = 0, both discs are green, so $P(X = 0) = \frac{1}{7}$. When X = 1, one of the discs is blue, so $P(X = 1) = \frac{2}{7} + \frac{2}{7} = \frac{4}{7}$. When X = 2, both discs are blue, so $P(X = 2) = \frac{2}{7}$.

X	0	1	2
$\mathbf{P}(X=x)$	$\frac{1}{7}$	$\frac{4}{7}$	$\frac{2}{7}$

Probability distributions defined algebraically

It is often convenient to define the probability distribution by writing it as an algebraic function.

Example 5

The probability distribution of a random variable X is given by:

$$P(X = r) = \frac{r}{15}$$
 for $r = 1, 3, 4, 7$.

Tabulate the possible outcomes.

Edexcel AS Maths Probability 2 Notes and Examples

Solution

<i>r</i> = 1		$\mathbf{P}(X=1)$	$=\frac{1}{15}$		
<i>r</i> = 3		P(X=3)	$= \frac{3}{15} = \frac{1}{5}$		
r = 4		P(X = 4)	$=\frac{4}{15}$		
<i>r</i> = 7		P(X = 7)	$=\frac{7}{15}$		
r	1	3	4	7	Check: $\frac{1}{15} + \frac{5}{15} + \frac{4}{15} + \frac{7}{15} = 1$
$\mathbf{P}(X=r)$	$\frac{1}{15}$	$\frac{3}{15}$	$\frac{4}{15}$	$\frac{7}{15}$	

Sometimes the probability distribution will be defined in terms of a constant.

Example 6

The probability distribution of a random variable *Y* is given by:

P(Y = y) = cy for y = 1, 2, 3, 4

Find the value of c and tabulate the probability distribution.

Solution

y = 1 y = 2 P(Y = 1) = $c \times 1 = c$ P(Y = 2) = $c \times 2 = 2c$ etc

	1	-	2	4
У	l	2	3	4
P(Y = y)	С	2c	3 <i>c</i>	4 <i>c</i>

Since the probabilities must add up to 1: c + 2c + 3c + 4c = 1

$$10c = 1$$
$$c = \frac{1}{10}$$

у	1	2	3	4
$\mathbf{P}(Y=y)$	$\frac{1}{10}$	$\frac{2}{10}$	$\frac{3}{10}$	$\frac{4}{10}$

The discrete uniform distribution

A special probability distribution is the discrete uniform distribution, in which there are a number of equally likely outcomes. You have of course worked with this distribution many times, when dealing with dice throws, random numbers and so on!

Example 1 in these notes shows a discrete uniform distribution.