Edexcel AS Further Maths Further calculus

Section 1: Volumes of revolution

Notes and Examples

These notes contain subsections on

- Solids of revolution formed by rotation about the x-axis
- Solids of revolution formed by rotation about the y-axis

Solids of revolution formed by rotation about the x -axis

The diagram above shows the solid of revolution formed when the section of the curve $y=\mathrm{f}(x)$ between $x=a$ and $x=b$ is rotated through 360° about the x-axis.

The volume of the solid is given by

$$
V=\int_{a}^{b} \pi y^{2} \mathrm{~d} x
$$

Example 1

A solid is formed by rotating the part of the graph of $y=2 x^{2}$ between $x=1$ and $x=2$ through 360° about the x-axis.
Find the volume of the solid.

Solution

$$
\begin{aligned}
\text { Volume } & =\int_{1}^{2} \pi y^{2} \mathrm{~d} x \\
& =\int_{1}^{2} \pi\left(2 x^{2}\right)^{2} \mathrm{~d} x \\
& =\pi \int_{1}^{2} 4 x^{4} \mathrm{~d} x
\end{aligned}
$$

Substitute $y=2 x^{2}$ into the formula

\checkmark

Edexcel AS FM Further calculus 1 Notes and Examples

$=\pi\left[\frac{4}{5} x^{5}\right]_{1}^{2}$
$=\frac{128}{5} \pi-\frac{4}{5} \pi \quad \ll$

$=\frac{124}{5} \pi$

Solids of revolution formed by rotation about the \boldsymbol{y}-axis

The diagram above shows the solid of revolution formed when the section of the curve $y=\mathrm{f}(x)$ between $y=c$ and $y=d$ is rotated through 360° about the y-axis.

The volume of the solid is given by

$$
V=\int_{c}^{d} \pi x^{2} \mathrm{~d} y
$$

Notice that in this case the integration is carried out with respect to y rather than x and the limits of integration are the y-coordinates rather than the x-coordinates.

Example 2

A solid is formed by rotating the part of the graph of $y=2 x^{2}$ between $x=1$ and $x=2$ through 360° about the y-axis.
Find the volume of the solid.

Solution

$y=2 x^{2} \Rightarrow x^{2}=\frac{1}{2} y$
When $x=1, y=2$
When $x=2, y=8$
Volume $=\int_{2}^{8} \pi x^{2} \mathrm{~d} y$

$=\pi \int_{2}^{8} \frac{1}{2} y \mathrm{~d} y$
$=\pi\left[\frac{1}{4} y^{2}\right]_{2}^{8}$
$=16 \pi-\pi$
$=15 \pi$

