Edexcel AS Further Maths Further calculus

v = kx

Section 1: Volumes of revolution

Exercise level 2

- 1. Find the volume of revolution produced when the curve $y = \sqrt{x-1}$ between y = 1 and y = 2 is rotated through 360° about the *y*-axis.
- 2. Find the volume of the solid generated by rotating the straight line y = kx between x = 0 and x = h through 360° about the *x*-axis. Deduce the formula for the volume of a cone with height *h* and base radius *r*.
- 3. A section of the curve $y = \frac{1}{x}$ between x = 1 and x = 2 is rotated through 360° about both axes in turn. Show that the volume of revolution about the *y*-axis is twice that about the *x*-axis.
- 4. This ellipse has equation $\frac{x^2}{4} + y^2 = 1$. Find the coordinates of the points P and Q, and hence find the volume of the solid of revolution produced when the ellipse is rotated about the *x*-axis.

- 5. Repeat question 4 to find the volume of revolution of the ellipse about the *y*-axis.
- 6. The diagram shows the region R which lies between the line y = x and the curve $y = x^3$ for $x \ge 0$.

Find the volume of the solid formed when the region R is rotated(i) about the *x*-axis.

(ii) about the y-axis.

