Edexcel AS Further Maths Further calculus

Section 1: Volumes of revolution

Exercise level 2

1. Find the volume of revolution produced when the curve $y=\sqrt{x-1}$ between $y=1$ and $y=2$ is rotated through 360° about the y-axis.
2. Find the volume of the solid generated by rotating the straight line $y=k x$ between $x=0$ and $x=h$ through 360° about the x-axis.
Deduce the formula for the volume of a cone with height h and base radius r.

3. A section of the curve $y=\frac{1}{x}$ between $x=1$ and $x=2$ is rotated through 360° about both axes in turn. Show that the volume of revolution about the y-axis is twice that about the x-axis.
4. This ellipse has equation $\frac{x^{2}}{4}+y^{2}=1$. Find the coordinates of the points P and Q , and hence find the volume of the solid of revolution produced when the ellipse is rotated about the x-axis.

5. Repeat question 4 to find the volume of revolution of the ellipse about the y-axis.
6. The diagram shows the region R which lies between the line $y=x$ and the curve $y=x^{3}$ for $x \geq 0$.

Find the volume of the solid formed when the region R is rotated
(i) about the x-axis.

(ii) about the y-axis.

