Section 4: Finding distances

Exercise level 1

1. A plane has equation $x-2 y+z+22=0$. The point P is $(2,1,-4)$.
(i) Use the formula $\left|\frac{n_{1} \alpha+n_{2} \beta+n_{3} \gamma+d}{\sqrt{n_{1}^{2}+n_{2}^{2}+n_{3}^{2}}}\right|$ for the distance of the point (α, β, γ) to the plane $n_{1} x+n_{2} y+n_{3} z+d=0$ to find the distance of P from the plane.
(ii) Write down an equation for the line L that passes through P and is perpendicular to the plane.
(iii) Find the point Q where the line L intersects the plane.
(iv) Find the distance $P Q$ and check it is the same as the distance found in (i).
2. A line L has equation $\mathbf{r}=\left(\begin{array}{l}1 \\ 0 \\ 3\end{array}\right)+\lambda\left(\begin{array}{c}-2 \\ 3 \\ 1\end{array}\right)$. The point P is $(-5,5,4)$.

The point M on the line has coordinates $(1-2 \lambda, 3 \lambda, 3+\lambda)$.
(i) Write down the vector $\overrightarrow{\mathrm{PM}}$ in terms of λ.
(ii) Find the value of λ for which $\overrightarrow{\mathrm{PM}}$ is perpendicular to the line L .
(iii) Hence find the coordinates of M .
(iv) Hence find the shortest distance of the point P from the line L .
3. A line L_{1} has equation $\mathbf{r}=\left(\begin{array}{c}10 \\ 3 \\ -13\end{array}\right)+\lambda\left(\begin{array}{c}5 \\ 2 \\ -3\end{array}\right)$.
(i) Write down an equation of the line L_{2} that is parallel to L_{1} and passes through the point ($2,3,-1$).
(ii) Use the method of Question 2 to find the distance between the two parallel lines by finding the distance of the point $(2,3,-1)$ from the line L_{1}.
4. Two lines L_{1} and L_{2} have equations $\mathbf{r}=\left(\begin{array}{c}-8 \\ -13 \\ 28\end{array}\right)+\lambda\left(\begin{array}{c}2 \\ -3 \\ 1\end{array}\right)$ and $\mathbf{r}=\left(\begin{array}{c}11 \\ -4 \\ -15\end{array}\right)+\mu\left(\begin{array}{l}1 \\ 4 \\ 2\end{array}\right)$ respectively. The point P on L_{1} has coordinates $(-8+2 \lambda,-13-3 \lambda, 28+\lambda)$ and Q on L_{2} has coordinates $(11+\mu,-4+4 \mu,-15+2 \mu)$. The lines are skew.
(i) Write down the vector $\overrightarrow{\mathrm{PQ}}$.
(ii) $\overrightarrow{\mathrm{PQ}}$ is perpendicular to the line L_{1}. Find an equation connecting λ and μ.
(iii) $\overrightarrow{\mathrm{PQ}}$ is also perpendicular to the line L_{2}. Find a second equation connecting λ and μ.
(iv) Solve your equations from (ii) and (iii) to find the values of λ and μ.
(v) Hence write down the coordinates of P and Q and find the distance between the two lines.

