

Section 3: The equation of a plane

Crucial points

1. Make sure you know the form of the equation of a plane The equation of the plane is $n_1x + n_2y + n_3z + d = 0$ where $d = -\mathbf{a} \cdot \mathbf{n}$. The coefficients n_1, n_2 and n_3 give the direction vector normal to the

plane and \mathbf{a} is the position vector of a point on the plane.

- 2. Remember that you can check whether a point lies on a plane by substituting the coordinates into the equation of the plane.
- 3. Make sure you know the different forms of the equation of a plane In scalar product form: $\mathbf{r} \cdot \mathbf{n} = \mathbf{a} \cdot \mathbf{n}$

In Cartesian form: $n_1x + n_2y + n_3z = d$ where $d = \mathbf{a} \cdot \mathbf{n}$.

In both these cases \mathbf{n} is a vector normal to the plane and \mathbf{a} is the position vector of a point on the plane.

In vector form: $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b} + \mu \mathbf{c}$

where ${\bf a}$ is the position vector of a point on the plane and ${\bf b}$ and ${\bf c}$ are both vectors which lie in the plane.

4. Remember how to recognise the normal vector to a plane from its equation

For a plane with Cartesian equation ax + by + cz = d, the normal vector to

the plane is $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$.

This is fundamental to all of your vector work. Make sure you know and understand it.

