Edexcel AS Further Mathematics Vectors

Section 3: The equation of a plane

Crucial points

1. Make sure you know the form of the equation of a plane

The equation of the plane is $n_{1} x+n_{2} y+n_{3} z+d=0$ where $d=-\mathbf{a} \cdot \mathbf{n}$.
The coefficients n_{1}, n_{2} and n_{3} give the direction vector normal to the plane and \mathbf{a} is the position vector of a point on the plane.
2. Remember that you can check whether a point lies on a plane by substituting the coordinates into the equation of the plane.
3. Make sure you know the different forms of the equation of a plane In scalar product form: r.n =a.n
In Cartesian form: $\quad n_{1} x+n_{2} y+n_{3} z=d$ where $d=\mathbf{a} \cdot \mathbf{n}$.
In both these cases \mathbf{n} is a vector normal to the plane and \mathbf{a} is the position vector of a point on the plane.
In vector form: $\quad \mathbf{r}=\mathbf{a}+\lambda \mathbf{b}+\mu \mathbf{c}$
where \mathbf{a} is the position vector of a point on the plane and \mathbf{b} and \mathbf{c} are both vectors which lie in the plane.
4. Remember how to recognise the normal vector to a plane from its equation
For a plane with Cartesian equation $a x+b y+c z=d$, the normal vector to the plane is $\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$.
This is fundamental to all of your vector work. Make sure you know and understand it.

