## Section 3: The equation of a plane

## Exercise level 2

1. (i) Find, in the form $\mathbf{r} . \mathbf{n}=d$, the equation of the plane which contains the point $(2,-6,1)$ and is perpendicular to the vector $3 \mathbf{i}+\mathbf{j}+3 \mathbf{k}$.
(ii) Write the equation in Cartesian form.
(iii) Find where the plane and the line $\mathbf{r}=\mathbf{j}-2 \mathbf{k}+\lambda(2 \mathbf{i}-5 \mathbf{j}+\mathbf{k})$ intersect.
(iv) Find the angle between the line and the plane.
2. (i) Find the position vector of the point of intersection of the line

$$
\mathbf{r}=\left(\begin{array}{c}
2 \\
0 \\
-1
\end{array}\right)+\lambda\left(\begin{array}{l}
1 \\
3 \\
0
\end{array}\right) \text { and the plane } \mathbf{r} \cdot\left(\begin{array}{c}
-5 \\
1 \\
-7
\end{array}\right)=9
$$

(ii) Find the angle between the line and the plane.
3. A plane contains the points $\mathrm{A}(3,0,2), \mathrm{B}(1,-1,1)$ and $\mathrm{C}(2,3,-1)$.

Find the equation of the plane
(i) in the form $\mathbf{r}=\mathbf{a}+\lambda \mathbf{b}+\mu \mathbf{c}$
(ii) in the form $\mathbf{r} . \mathbf{n}=d$
4. Show that the plane $\mathbf{r} \cdot(3 \mathbf{i}-2 \mathbf{j}+\mathbf{k})=1$ contains the line

$$
\mathbf{r}=3 \mathbf{i}+3 \mathbf{j}-2 \mathbf{k}+\lambda(\mathbf{i}+\mathbf{j}-\mathbf{k})
$$

5. A plane has equation $\mathbf{r}=\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right)+\lambda\left(\begin{array}{c}2 \\ -1 \\ 3\end{array}\right)+\mu\left(\begin{array}{c}-1 \\ 3 \\ 2\end{array}\right)$.

Write the equation of this plane in Cartesian form.

