

Section 3: The equation of a plane

Exercise level 1

1. Find, in Cartesian form, the equation of the plane containing the point (2, -3, 1)

and perpendicular to the vector $\begin{pmatrix} 5\\1\\-2 \end{pmatrix}$.

- 2. Find, in the form $\mathbf{r.n} = d$, the equation of the plane containing the point (1, 4, 0) and perpendicular to the vector $\begin{pmatrix} 3 \\ -1 \\ 4 \end{pmatrix}$.
- 3. A plane contains three points A (2, 1, 0), B (3, -1, 1) and C (1, 2, 5). (i) Show that the vector $\begin{pmatrix} 11\\6\\1 \end{pmatrix}$ is perpendicular to both \overrightarrow{AB} and \overrightarrow{BC} .
 - (ii) Hence find the equation of the plane in Cartesian form.
- 4. A plane contains three points P (1, 4, 2), Q (0, 1, -1) and R (3, -2, 1). Find an equation for the plane in the form $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b} + \mu \mathbf{c}$.
- 5. For each of the following lines and planes, find(a) the point of intersection of the line and the plane(b) the angle between the line and the plane

(i)
$$\mathbf{r} = \begin{pmatrix} 1\\3\\4 \end{pmatrix} + \lambda \begin{pmatrix} 2\\0\\-1 \end{pmatrix}$$
 and $2x - 3y + z = 3$
(ii) $\mathbf{r} = \begin{pmatrix} 2\\-1\\5 \end{pmatrix} + \lambda \begin{pmatrix} 1\\3\\4 \end{pmatrix}$ and $3x + y + 4z = 3$
(iii) $\mathbf{r} = \begin{pmatrix} 1\\3\\-2 \end{pmatrix} + \lambda \begin{pmatrix} 4\\-3\\2 \end{pmatrix}$ and $5x + 2y + 7z = 11$

