Edexcel AS Further Mathematics Vectors

Section 2: The vector equation of a line

Exercise level 2

1. A, B, C, and D are the points $(2,3),(4,-1),(6,0)$ and $(3,5)$ respectively.
(i) Write down the vector equations of AB and CD .
(ii) Find the position vector of the point of intersection of AB and CD .
(iii) Find the angle between the lines AB and CD.
2. $\mathrm{A}(1,0) \mathrm{B}(0,3) \mathrm{C}(2,5) \mathrm{D}(3,2)$ are vertices of the quadrilateral ABCD .
(i) Write down the vector equations of $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$, and AD .
(ii) What sort of quadrilateral is ABCD ?
(iii) Find the internal angles of the quadrilateral.
3. Show that the lines

$$
\mathbf{r}_{1}=-6 \mathbf{j}+\lambda(\mathbf{i}+\mathbf{j}), \quad \mathbf{r}_{2}=9 \mathbf{j}+\mu(3 \mathbf{i}-2 \mathbf{j}) \text { and } \mathbf{r}_{3}=-15 \mathbf{j}+\delta(\mathbf{i}+2 \mathbf{j})
$$

all pass through the same point and find the coordinates of this point.
4. Find the angle between the lines

$$
\mathbf{r}=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)+\lambda\left(\begin{array}{l}
0 \\
5 \\
1
\end{array}\right) \text { and } \mathbf{s}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)+\mu\left(\begin{array}{l}
4 \\
2 \\
2
\end{array}\right)
$$

5. Show that the lines $\mathbf{r}=\mathbf{k}+\lambda(\mathbf{i}-\mathbf{j}-3 \mathbf{k})$ and $\mathbf{r}=2 \mathbf{i}+\mathbf{j}+\mu(3 \mathbf{j}+5 \mathbf{k})$ intersect and find the coordinates of the point of intersection.
6. Decide which of the points A, B or C with position vectors $\mathbf{a}=\mathbf{i}-2 \mathbf{j}$, $\mathbf{b}=3 \mathbf{i}-\mathbf{j}-\mathbf{k}$ and $\mathbf{c}=\mathbf{i}+\mathbf{j}+2 \mathbf{k}$ lie on the line $\mathbf{r}=2 \mathbf{i}-3 \mathbf{j}+2 \mathbf{k}+\lambda(\mathbf{i}+2 \mathbf{j}-3 \mathbf{k})$.
7. The position vectors of A and B respectively are $4 \mathbf{i}-8 \mathbf{j}$ and $7 \mathbf{i}-2 \mathbf{j}+3 \mathbf{k}$.
(i) Find the vector equation of the line AB .
(ii) Given that the equation of the line CD is $\mathbf{r}=8 \mathbf{i}-2 \mathbf{j}+\mu(\mathbf{i}+\mathbf{j}-\mathbf{k})$, find the point of intersection (if any) of AB and CD .
8. The lines with equations given by

$$
\mathbf{r}=\left(\begin{array}{l}
2 \\
3 \\
1
\end{array}\right)+\lambda\left(\begin{array}{l}
1 \\
-2 \\
-3
\end{array}\right) \text { and } \mathbf{s}=\left(\begin{array}{l}
3 \\
-4 \\
2
\end{array}\right)+\mu\left(\begin{array}{l}
1 \\
3 \\
k
\end{array}\right)
$$

intersect at the point P. Find the value of k and the position vector of P.

