Section 2: The vector equation of a line

Exercise level 1

1. Find vector equations for the lines joining
(i) $(2,5)$ to $(3,-1)$
(ii) $(-3,2)$ to $(1,6)$
(iii)passing through $(0,6)$ and parallel to $3 \mathbf{i}-\mathbf{j}$
2. Find the points of intersection of the lines
(i) $\mathbf{r}=\binom{3}{3}+\lambda\binom{1}{-1}$ and $\mathbf{s}=\binom{1}{0}+\mu\binom{2}{2}$
(ii) $\mathbf{r}=\binom{2}{1}+\lambda\binom{3}{0}$ and $\mathbf{s}=\binom{4}{3}+\mu\binom{1}{2}$
3. (i) Find the angle between the lines

$$
\mathbf{r}=2 \mathbf{i}-\mathbf{j}+\lambda(3 \mathbf{i}-4 \mathbf{j}) \text { and } \mathbf{s}=3 \mathbf{i}+\mathbf{j}+\mu(2 \mathbf{i}-3 \mathbf{j}) .
$$

(ii) Which line is perpendicular to
(a) $8 \mathbf{i}+6 \mathbf{j}$
(b) $6 \mathbf{i}+4 \mathbf{j}$
(iii) For each line, find the unit vector which is parallel to the line.
4. Find the vector and Cartesian equations of the line joining $(3,1,1)$ to $(-2,3,5)$.
5. Write in Cartesian form the equation of the line $\mathbf{r}=\left(\begin{array}{l}3 \\ 1 \\ 3\end{array}\right)+\lambda\left(\begin{array}{c}-1 \\ 2 \\ 2\end{array}\right)$.
6. Write in vector form the equation of the line $\frac{x-1}{1}=\frac{y+2}{4}=\frac{z-3}{2}$.
7. Find whether each pair of lines intersects or not. If they do intersect, give the coordinates of the point of intersection.
(i) $\underset{\sim}{\mathbf{r}}=\left(\begin{array}{c}-2 \\ 1 \\ 3\end{array}\right)+\lambda\left(\begin{array}{c}2 \\ 0 \\ -3\end{array}\right)$ and $\underset{\sim}{\mathbf{r}}=\left(\begin{array}{c}5 \\ 3 \\ -2\end{array}\right)+\mu\left(\begin{array}{l}1 \\ 2 \\ 4\end{array}\right)$
(ii) $\underset{\sim}{\mathbf{r}}=\left(\begin{array}{c}3 \\ -1 \\ 0\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ 2 \\ -3\end{array}\right)$ and $\underset{\sim}{\underset{r}{r}}=\left(\begin{array}{c}5 \\ 1 \\ -3\end{array}\right)+\mu\left(\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right)$
(iii) $\underset{\sim}{\mathbf{r}}=\left(\begin{array}{c}2 \\ 6 \\ -3\end{array}\right)+\lambda\left(\begin{array}{c}4 \\ 2 \\ -3\end{array}\right)$ and $\underset{\sim}{\mathbf{r}}=\left(\begin{array}{l}2 \\ 0 \\ 4\end{array}\right)+\mu\left(\begin{array}{c}1 \\ -1 \\ -3\end{array}\right)$

Edexcel AS FM Vectors 2 Exercise

(iv) $\underset{\sim}{\mathbf{r}}=\left(\begin{array}{l}1 \\ 2 \\ 6\end{array}\right)+\lambda\left(\begin{array}{l}-1 \\ 2 \\ 3\end{array}\right)$ and $\underset{\sim}{\mathbf{r}}=\left(\begin{array}{c}1 \\ -5 \\ 4\end{array}\right)+\mu\left(\begin{array}{c}2 \\ 3 \\ -4\end{array}\right)$

