Edexcel AS Further Mathematics Vectors

Section 1: The scalar product

Notes and Examples

These notes contain subsections on

- The scalar product
- Finding the angle between two vectors

The scalar product

The scalar product (or dot product) of two vectors $\mathbf{a}=a_{1} \mathbf{i}+a_{2} \mathbf{j}$ and $\mathbf{b}=b_{1} \mathbf{i}+b_{2} \mathbf{j}$ is written as $\mathbf{a} \cdot \mathbf{b}$ and is found by:

$$
\mathbf{a} \cdot \mathbf{b}=a_{1} b_{1}+a_{2} b_{2}
$$

In the same way, when working with vectors in three dimensions, the scalar product of two vectors $\mathbf{a}=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}$ and $\mathbf{b}=b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k}$ is found by:

$$
\mathbf{a} \cdot \mathbf{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} .
$$

Example 1
Work out
(i) $\quad\binom{5}{-3} \cdot\binom{-1}{-2}$
(ii) $\quad\left(\begin{array}{c}2 \\ 0 \\ -3\end{array}\right) \cdot\left(\begin{array}{c}4 \\ -2 \\ 1\end{array}\right)$

Solution

(i) $\binom{5}{-3} \cdot\binom{-1}{-2}=5 \times(-1)+(-3) \times(-2)=-5+6=1$
(ii) $\left(\begin{array}{c}2 \\ 0 \\ -3\end{array}\right) \cdot\left(\begin{array}{c}4 \\ -2 \\ 1\end{array}\right)=(2 \times 4)+(0 \times-2)+(-3 \times 1)=8+0-3=5$

Finding the angle between two vectors

The angle between two vectors is found using the formula:

$$
\begin{aligned}
\cos \theta & =\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|} \\
\mathbf{a} \cdot \mathbf{b} & =|\mathbf{a}||\mathbf{b}| \cos \theta
\end{aligned}
$$

This is also written as:

Edexcel FM Vectors 1 Notes and Examples

The next example shows you how to use this formula to find the angle between two vectors.

Example 2

Work out the angle between the vectors $\mathbf{a}=2 \mathbf{i}-3 \mathbf{j}$ and $\mathbf{b}=\mathbf{i}+4 \mathbf{j}$

Solution

Use the formula $\cos \theta=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}$.
$\mathbf{a} \cdot \mathbf{b}=\binom{2}{-3} \cdot\binom{1}{4}=2 \times 1+(-3) \times 4=2-12=-10$
$|\mathbf{a}|=\sqrt{2^{2}+(-3)^{2}}=\sqrt{4+9}=\sqrt{13}$
$|\mathbf{b}|=\sqrt{1^{2}+4^{2}}=\sqrt{1+16}=\sqrt{17}$
Substituting into $\cos \theta=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}$:

$$
\cos \theta=\frac{-10}{\sqrt{13} \sqrt{17}}=-0.6726 \ldots
$$

So $\theta=132.3^{\circ}$ to 1 d.p.

The angle between two 3-D vectors can be found in the same way.
When two lines are perpendicular to each other then:

$$
\theta=90^{\circ} \Rightarrow \cos \theta=0 \Rightarrow \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}=0
$$

If $\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}=0$ then $\mathbf{a} \cdot \mathbf{b}=0$
This is a very important result and means that to show that two vectors are perpendicular you only need to show that the scalar product is 0 .

Example 3

Show that the vectors $\left(\begin{array}{c}2 \\ -4 \\ 1\end{array}\right)$ and $\left(\begin{array}{l}3 \\ 2 \\ 2\end{array}\right)$ are perpendicular.

Solution

If two vectors are perpendicular then $\mathbf{a} \cdot \mathbf{b}=0$
$\left(\begin{array}{c}2 \\ -4 \\ 1\end{array}\right) \cdot\left(\begin{array}{l}3 \\ 2 \\ 2\end{array}\right)=(2 \times 3)+(-4 \times 2)+(1 \times 2)=6-8+2=0$ as required.

